### MX268130A/330A/730A/ MX860830A/930A

Wireless LAN Measurement Software (for MS2681A/MS2683A/MS2687A/ MS2687B/MS8608A/MS8609A) Operation Manual

### **Eighth Edition**

Read this manual before using the equipment.

Keep this manual with the equipment.

## **ANRITSU CORPORATION**

Document No.: M-W2080AE-8.0

# Safety Symbols

To prevent the risk of personal injury or loss related to equipment malfunction, Anritsu Corporation uses the following safety symbols to indicate safety-related information. Ensure that you clearly understand the meanings of the symbols BEFORE using the equipment. Some or all of the following symbols may be used on all Anritsu equipment. In addition, there may be other labels attached to products that are not shown in the diagrams in this manual.

### Symbols used in manual

DANGER

This indicates a very dangerous procedure that could result in serious injury or death if not performed properly.

**WARNING** This indicates a hazardous procedure that could result in serious injury or death if not performed properly.

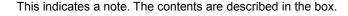
CAUTION /

This indicates a hazardous procedure or danger that could result in light-to-severe injury, or loss related to equipment malfunction, if proper precautions are not taken.

#### Safety Symbols Used on Equipment and in Manual

The following safety symbols are used inside or on the equipment near operation locations to provide information about safety items and operation precautions. Ensure that you clearly understand the meanings of the symbols and take the necessary precautions BEFORE using the equipment.




This indicates a prohibited operation. The prohibited operation is indicated symbolically in or near the barred circle.



This indicates an obligatory safety precaution. The obligatory operation is indicated symbolically in or near the circle.



This indicates a warning or caution. The contents are indicated symbolically in or near the triangle.







These indicate that the marked part should be recycled.

#### MX268130A/330A/730A/MX860830A/930A

Wireless LAN Measurement Software (for MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A) **Operation Manual** 

13 August 2002 (First Edition) 22 April 2009 (Eighth Edition)

Copyright © 2002-2009, ANRITSU CORPORATION.

All rights reserved. No part of this manual may be reproduced without the prior written permission of the publisher.

The contents of this manual may be changed without prior notice.

Printed in Japan

### WARNING /





1. ALWAYS refer to the operation manual when working near locations at which the alert mark shown on the left is attached. If the operation, etc., is performed without heeding the advice in the operation manual, there is a risk of personal injury. In addition, the equipment performance may be reduced.

Moreover, this alert mark is sometimes used with other marks and descriptions indicating other dangers.

#### 2. Measurement Categories

This instrument is designed for Measurement category I (CAT I). Do not use this instrument at the location of measurement categories from CAT II to CAT IV.

In order to secure the safety of the user making measurements, IEC 61010 clarifies the range of use of instruments by classifying the location of measurement into measurement categories from I to IV. The category outline is as follows:

Measurement category I (CAT I):

Secondary circuits of a device connected to an outlet via a power transformer etc.

Measurement category II (CAT II):

Primary circuits of a device with a power cord (portable tools, home appliance etc.) connected to an outlet.

Measurement category III (CAT III):

Primary circuits of a device (fixed equipment) to which power is directly supplied from the power distribution panel, and circuits from the distribution panel to outlets.

Measurement category IV (CAT IV):

All building service-line entrance circuits through the integrating wattmeter and primary circuit breaker (power distribution panel).



3. When supplying power to this equipment, connect the accessory 3-pin power cord to a grounded outlet. If a grounded outlet is not available, before supplying power to the equipment, use a conversion adapter and ground the green wire, or connect the frame ground on the rear panel of the equipment to ground. If power is supplied without grounding the equipment, there is a risk of receiving a severe or fatal electric shock.

#### Repair



4. This equipment cannot be repaired by the user. DO NOT attempt to open the cabinet or to disassemble internal parts. Only Anritsu-trained service personnel or staff from your sales representative with a knowledge of electrical fire and shock hazards should service this equipment. There are high-voltage parts in this equipment presenting a risk of severe injury or fatal electric shock to untrained personnel. In addition, there is a risk of damage to precision parts.

#### **Falling Over**

- 5. This equipment should be used in the correct position. If the cabinet is turned on its side, etc., it will be unstable and may be damaged if it falls over as a result of receiving a slight mechanical shock.
  And also DO NOT use this equipment in the position where the power switch operation is difficult.
- DO NOT short the battery terminals and never attempt to disassemble it or dispose of it in a fire. If the battery is damaged by any of these actions, the battery fluid may leak.

This fluid is poisonous.

#### **Battery Fluid**

- DO NOT touch it, ingest it, or get in your eyes. If it is accidentally ingested, spit it out immediately, rinse your mouth with water and seek medical help. If it enters your eyes accidentally, do not rub your eyes, irrigate them with clean running water and seek medical help. If the liquid gets on your skin or clothes, wash it off carefully and thoroughly.
- This instrument uses a Liquid Crystal Display (LCD); DO NOT subject the instrument to excessive force or drop it. If the LCD is subjected to strong mechanical shock, it may break and liquid may leak.

This liquid is very caustic and poisonous.

LCD

DO NOT touch it, ingest it, or get in your eyes. If it is ingested accidentally, spit it out immediately, rinse your mouth with water and seek medical help. If it enters your eyes accidentally, do not rub your eyes, irrigate them with clean running water and seek medical help. If the liquid gets on your skin or clothes, wash it off carefully and thoroughly.

## **CAUTION**



#### **Changing Fuse**



1. Before changing the fuses, ALWAYS remove the power cord from the poweroutlet and replace the blown fuses. ALWAYS use new fuses of the type and rating specified on the fuse marking on the rear panel of the cabinet.

T6.3A indicates a time-lag fuse.

There is risk of receiving a fatal electric shock if the fuses are replaced with the power cord connected.

- 2. Keep the power supply and cooling fan free of dust.
  - · Clean the power inlet regularly. If dust accumulates around the power pins, there is a risk of fire.
  - Keep the cooling fan clean so that the ventilation holes are not obstructed. If the ventilation is obstructed, the cabinet may overheat and catch fire.

#### Input Level

Cleaning



3. Maximum DC voltage ratings:

RF Input connector: ±DC 0 V

Maximum AC power (continuous wave) ratings:

For MS2681A/MS2683A/MS2687A/MS2687B

+30 dBm

For MS8608A

**High Power Input** 

+40 dBm

Low Power Input

+20 dBm

For MS8609A

+20 dBm

NEVER input a over maximum ratings to RF Input, excessive power may damage the internal circuits.

## **CAUTION** $\wedge$



#### Replacing memory back-up battery

This equipment uses a Poly-carbomonofluoride lithium battery to back-up the memory. This battery must be replaced by a service engineer when it has reached the end of its useful life; contact the Anritsu sales section or your nearest representative.

Note: The battery used in this equipment has a maximum useful life of 7 years. It should be replaced before this period has elapsed.

#### **External** storage media

This equipment uses memory cards as external storage media for storing data and programs.

If this media is mishandled or becomes faulty, important data may be lost. To prevent this chance occurrence, all important data and programs should be backed-up.

Anritsu will not be held responsible for lost data.

Pay careful attention to the following points.

- Do not remove the memory card from equipment being accessed.
- Isolate the card from static electricity.

## **Equipment Certificate**

Anritsu guarantees that this equipment was inspected at shipment and meets the published specifications.

## **Anritsu Warranty**

- During the warranty period, Anritsu will repair or exchange this software free-of-charge at the company's own discretion if it proves defective when used as described in the operation manual.
- The warranty period is 1 year from the purchase date.
- The warranty period after repair or exchange will remain 1 year from the original purchase date, or 30 days from the date of repair or exchange, depending on whichever is longer.
- This warranty does not cover damage to this software caused by Acts of God, natural disasters, and misuse or mishandling by the customer.

In addition, this warranty is valid only for the original equipment purchaser. It is not transferable if the equipment is resold.

Anritsu Corporation will not accept liability for equipment faults due to unforeseen and unusual circumstances, nor for faults due to mishandling by the customer.

### **Anritsu Corporation Contact**

If this equipment develops a fault, contact Anritsu Corporation or its representatives at the address at the end of paper-edition manual or the separate file of CD-edition manual.

### Notes On Export Management

This product and its manuals may require an Export License/Approval by the Government of the product's country of origin for re-export from your country.

Before re-exporting the product or manuals, please contact us to confirm whether they are export-controlled items or not.

When you dispose of export-controlled items, the products/manuals are needed to be broken/shredded so as not to be unlawfully used for military purpose.

### Trademark and Registered Trademark

Windows is a registered trademark of Microsoft Corporation in the United States and/or other countries.

## **Front Panel Power Switch**

To prevent malfunction caused by accidental touching, the front power switch of this equipment turns on the power if it is pressed continuously for about one second in the standby state. If the switch is pressed continuously for one second in the power-on state, the equipment enters the standby state.

In the power-on state, if the power plug is removed from the outlet, then reinserted into it, the power will not be turned on. Also, if the lines is disconnected due to momentary power supply interruption or power failure, the power will not be turned on (enters the standby state) even if the line is recovered.

This is because this equipment enters the standby state and prevents incorrect data from being acquired when the line has to be disconnected and reconnected.

For example, if the sweep time is 1,000 seconds and data acquisition requires a long time, momentary power supply interruption (power failure) might occur during measurement and the line could be recovered automatically to power-on. In such a case, the equipment may mistake incorrect data for correct data without recognizing the momentary power supply interruption.

If this equipment enters the standby state due to momentary power supply interruption or power failure, check the state of the measuring system and press the front power switch to restore power to this equipment.

Further, if this equipment is built into a system and the system power has to be disconnected then reconnected, the power for this equipment must also be restored by pressing the front power switch.

Consequently, if this equipment is built into remote monitoring systems that use MODEMs, please install option MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A-46 "Auto Power Recovery" to equipment.

## **Software License Agreement**

Please read this Software License Agreement before using the accompanying software program (hereafter this software).

You are authorized to use this software only if you agree to all the terms of this License.

By opening the sealed package containing this software, you are agreeing to be bound by the terms of this License.

If you do not agree to these terms, return the unopened software package to Anritsu Corporation (hereafter Anritsu).

#### 1. License

- (1) This License gives you the right to use this software on one MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A (hereafter computer system).
- (2) To use this software on one computer system, this License allows you to make one copy of this software on the storage device of your computer system.
- (3) You must obtain a site license to use this software on more than one computer system even if such computer systems are not operating simultaneously.

#### 2. Copyright

- (1) Although you are licensed to use this software, Anritsu retains the copyright.
- (2) Although you have purchased this software, rights other than those specified in this License are not transferred to you.
- (3) You may not print, copy, modify, create derivative works, incorporate in other software programs, decompile or disassemble this software in whole or in part, without obtaining prior written permission from Anritsu.

#### 3. Copying

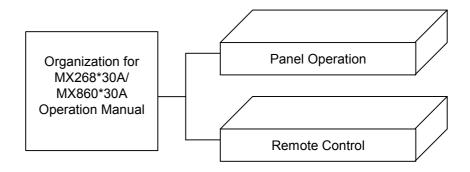
Notwithstanding item (3) of section 2 above, you may make one copy of this software for backup purposes only. In this case, you may only use either the backup copy or the original copy of this software.

#### 4. Termination

- (1) Anritsu will deem this License to be automatically terminated if you fail to comply with any provision of this License. Upon termination, you will lose all rights to this software.
- (2) Either party (Anritsu or yourself) to this Software License Agreement may terminate this Agreement by giving 1 months notice in writing to the other party.
- (3) Upon termination of this License for any reason, you must either immediately destroy this software and related documentation, or return it to Anritsu.

### **About This Manual**

1. This operation manual provides the explanation of the Measurement Software when it is installed in the MS2681A/MS2683A/MS2687A/MS2687B Spectrum Analyzer or MS8608A/MS8609A Digital Mobile Radio Transmitter Tester. Front and rear panels shown in this manual are of MS2683A.


MX268x30A and MS268xA represent MX268130A/MX268330A/MX268730A and MS2681A/MS2683A/MS2687A/MS2687B, respectively. MX268130A/MX268330A/MX268730A is Wireless LAN Measurement Software for MS2681A/MS2683A/MS2687A/MS2687B, respectively.

MX860x30A and MS860xA represent MX860830A/MX860930A and MS8608A/MS8609A, respectively.

MX860830A/MX860930A is Wireless LAN Measurement Software for MS8608A/MS8609A, respectively.

#### 2. Organization of this Manual

The MX268x30A/MX860x30A Wireless LAN Measurement Software operation manual is made up of the two parts shown below.



#### Panel Operation:

Describes the overview, panel explanations, operations and performance test for the

MX268130A/MX268330A/MX268730A/MX860830A/ MX860930A.

#### Remote Control:

Describes the RS-232C (standard) and GPIB (standard) remote control for the MX268130A/MX268330A/MX268730A/MX860830A/MX860930A.

MX268130A/330A/730A/
MX860830A/930A
Wireless LAN Measurement Software
(for MS2681A/MS2683A/MS2687A/
MS2687B/MS8608A/MS8609A)
Operation Manual
(Panel Operation)

## **Table of Contents**

| For S   | afety                                    | iii   |
|---------|------------------------------------------|-------|
| Abou    | t This Manual                            | I     |
| Section | on 1 Outline                             | 1-1   |
| 1.1     | Product Overview                         | 1-2   |
| 1.2     | Product Composition                      | 1-3   |
| 1.3     | Product Specifications                   | 1-4   |
| Section | on 2 Panel Layout and                    |       |
|         | Operation Overview                       | 2-1   |
| 2.1     | Table of Front and Rear Panel Features   | 2-2   |
| 2.2     | Basic Operation                          | 2-10  |
| 2.3     | Installing Measurement Software          | 2-12  |
| 2.4     | Changing Measurement System              | 2-13  |
| 2.5     | Setting Screen Colors                    | 2-14  |
| Section | on 3 Measurement                         | 3-1   |
| 3.1     | Setting Measurement Parameters           | 3-6   |
| 3.2     | Analyzing Modulation Accuracy            | 3-23  |
| 3.3     | Measuring Transmit Power                 | 3-42  |
| 3.4     | Measuring Occupied Frequency Bandwidth   | 3-51  |
| 3.5     | Measuring Adjacent Channel Leakage Power | 3-59  |
| 3.6     | Measuring Spectrum Mask                  | 3-68  |
| 3.7     | Measuring Spurious                       | 3-79  |
| 3.8     | Measuring CCDF                           | 3-105 |
| 3.9     | Measuring Symbol Rate Error              | 3-111 |
| 3.10    | Measuring Chip Clock Frequency           | 3-114 |
| 3.11    | Measuring IQ Level                       | 3-117 |
| 3.12    | Power Meter                              | 3-120 |
| 3.13    | Measuring in Batch                       | 3-122 |
| 3.14    | Saving and Recalling Setting Parameters  | 3-150 |

| Sectio | n 4 Performance Test                   | 4-1 |
|--------|----------------------------------------|-----|
| 4.1    | When Performance Test Is Required      | 4-2 |
| 4.2    | List of Equipment for Performance Test | 4-3 |
| 4.3    | Performance Test                       | 4-4 |

# Section 1 Outline

This section describes the overview, product configuration, and specifications of the MX268130A/330A/730A Wireless LAN Measurement Software for the MS2681A/MS2683A/MS2687A/MS2687B Spectrum Analyzer.

| 1.1 | Product Overview       | 1-2 |
|-----|------------------------|-----|
| 1.2 | Product Composition    | 1-3 |
| 1.3 | Product Specifications | 1-4 |

### 1.1 Product Overview

The MS2681A/MS2683A/MS2687A/MS2687B Spectrum Analyzer and MS8608A/MS8609A Digital Mobile Radio Transmitter Tester (hereafter, "this analyzer") enable high-speed, high-accuracy and also easy measurement of base-station and mobile-station transmitter characteristics for various mobile communications.

The Analyzer can be used for device evaluation, and more, as it supports both IQ (baseband) and RF-IF signal evaluation.

Furthermore, with the installation of measurement software, the Analyzer can perform modulation analysis for a variety of digital modulation systems. Using high-speed digital signal processing technology also makes fast, accurate measuring possible.

By installing the MX268130A/MX268330A/MX268730A/MX860830A/MX860930A Wireless LAN Measurement Software (hereafter, "Wireless LAN software"), this analyzer can function as a comprehensive measuring instrument, enabling easy measurement of functions and performance of radio equipment for Wireless LAN digital mobile radio.

Measurement functions of the Wireless LAN software equipped spectrum analyzer are as follows:

- Modulation Analysis
- · Carrier Frequency Measurement
- RF Power Measurement
- · Occupied Bandwidth
- · Adjacent Channel Leakage Power
- · Spectrum Mask
- · Spurious Emission
- CCDF
- · Symbol Rate Error Measurement
- · Chip Clock Error Measurement
- · IQ Level
- · Power Meter
- · Batch Measurement

## 1.2 Product Composition

Combination of the Analyzer with Wireless LAN software as well as product composition are shown in the tables below.

#### · When the analyzer main body is MS2681A

|             | Item                              | Qty | Model/<br>Ordering No. | Remarks                    |
|-------------|-----------------------------------|-----|------------------------|----------------------------|
| Main Unit   | Wireless LAN measurement software | 1   | MX268130A              | Provided by<br>Memory card |
| Accessories | Operation manual                  | 1   | W2080AE                |                            |

#### • When the analyzer main body is MS2683A

|             | Item                              | Qty | Model/<br>Ordering No. | Remarks                    |
|-------------|-----------------------------------|-----|------------------------|----------------------------|
| Main Unit   | Wireless LAN measurement software | 1   | MX268330A              | Provided by<br>Memory card |
| Accessories | Operation manual                  | 1   | W2080AE                |                            |

#### - When the analyzer main body is MS2687A/MS2687B

|             | ltem                              | Qty | Model/<br>Ordering No. | Remarks                    |
|-------------|-----------------------------------|-----|------------------------|----------------------------|
| Main Unit   | Wireless LAN measurement software | 1   |                        | Provided by<br>Memory card |
| Accessories | Operation manual                  | 1   | W2080AE                |                            |

#### • When the analyzer main body is MS8608A

|             | Item                              | Qty | Model/<br>Ordering No. | Remarks                    |
|-------------|-----------------------------------|-----|------------------------|----------------------------|
| Main Unit   | Wireless LAN measurement software | 1   |                        | Provided by<br>Memory card |
| Accessories | Operation manual                  | 1   | W2080AE                |                            |

#### • When the analyzer main body is MS8609A

|             | ltem                              | Qty | Model/<br>Ordering No. | Remarks                    |
|-------------|-----------------------------------|-----|------------------------|----------------------------|
| Main Unit   | Wireless LAN measurement software | 1   |                        | Provided by<br>Memory card |
| Accessories | Operation manual                  | 1   | W2080AE                |                            |

## 1.3 Product Specifications

Specified values are obtained after warming up the equipment for 30 minutes at a constant ambient temperature and then performing calibration.

Guaranteed specifications after Adjust Range and Level Calibration keys pressed.

Pre-amp On can be set when MS2681A-08 and MS2683A-08 are installed in the main frame.

IQ-input can be set when MS2681A-17/18, MS2683A-17/18 and MS2687B-18 are installed in the main frame.

### ■ IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM), HiSWANa<sup>(\*1)</sup>, HiperLAN2<sup>(\*2)</sup> 1/6

- \*1: HiSWANa measurement function cannot carry out the following measurement.
  - 1) Measurement for every MAC frame
  - 2) Measurement of a signal whose cyclic prefix duration is not 800 ns
  - 3) Measurement of a continuous signal whose modulation type is not constant.
- \*2: HiperLAN2 measurement function cannot carry out the following measurement.
  - 1) The same measurement as "\*1".
  - 2) Measurement of a burst signal whose modulation type on payload is not constant.
  - 3) Measurement of power time mask.
- \*3: When burst interval is 20 us or less, the Wireless LAN software cannot measure the following item rightly:
  - 1) Carrier off power, 2) On/Off ratio
- \*4: "Batch measurement" function cannot carry out when "Target system: HiSWANa" and "Data rate: Auto" are set.

|                        | Model           | MX268130A                                                                                                       | MX268330A                                                                                                                                                  | MX268730A                                                                                                             |  |
|------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
| Modulation ty          | /ре             | OFDM-64QAM, OFDM-16QAM                                                                                          | M, OFDM-QPSK,OFDM-BPSK                                                                                                                                     |                                                                                                                       |  |
|                        |                 | [IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM)] 54, 48, 36, 24, 18, 12, 9, 6 Mbps, Auto (at burst signal only) |                                                                                                                                                            |                                                                                                                       |  |
| Data rate              |                 | [HiSWANa] 54, 36, 27, 18, 12,                                                                                   | 9, 6 Mbps, Auto (at burst signal                                                                                                                           | only)                                                                                                                 |  |
|                        |                 | [HiperLAN2] 54, 36, 27, 18, 12, 9, 6 Mbps                                                                       |                                                                                                                                                            |                                                                                                                       |  |
| ivieasuremeni i .      |                 |                                                                                                                 | cy, carrier frequency error)<br>ase error-RMS), OFDM-specti                                                                                                |                                                                                                                       |  |
| Modulation<br>analysis | Frequency range | 100 MHz to 3 GHz                                                                                                | [IEEE802.11a, HiSWANa,<br>HiperLAN2]<br>100 MHz to 6 GHz<br>100 MHz to 3 GHz<br>(Pre-amp On)<br>[IEEE802.11g<br>(ERP-OFDM, DSSS-OFDM)]<br>100 MHz to 3 GHz | [IEEE802.11a, HiSWANa,<br>HiperLAN2]<br>100 MHz to 6 GHz<br>[IEEE802.11g<br>(ERP-OFDM, DSSS-OFDM)]<br>100 MHz to 3GHz |  |

## ■ IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM), HiSWANa<sup>(\*1)</sup>, HiperLAN2<sup>(\*2)</sup> 2/6

|                                                                                                                                                                                                                                                                           | Model                                        | MX268130A                                                                                                                                                                                                                                                                                                                      | MX268330A MX268730A                                                                                                     |       |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------|--|--|
| [IEEE802.11a, HiSWANa, HiperLAN2] Temperature: +18 to +35°C, setting frequency ±120 kHz (3 to 6 GHz, MS2681A is object outside.), setting frequency ±80 kHz (100 MHz to 3 GHz)  [IEEE802.11g (ERP-OFDM, DSSS-OFDM)] Temperature: +18 to +35 °C, setting frequency ±80 kHz |                                              |                                                                                                                                                                                                                                                                                                                                |                                                                                                                         |       |  |  |
|                                                                                                                                                                                                                                                                           | Measurement level range                      | -26 to +26 dBm, -46 to +26 dBm (Pre-amp On) -26 to +24 dBm                                                                                                                                                                                                                                                                     |                                                                                                                         |       |  |  |
|                                                                                                                                                                                                                                                                           | Carrier frequency accuracy                   | [IEEE802.11a, HiSWANa,<br>HiperLAN2] [IEEE802.11a, HiSWANa, HiperLAN2]<br>Frequency: 2 to 2.5 GHz [IEEE802.11g (ERP-OFDM, DSSS-OFDM)]<br>(ERP-OFDM, DSSS-OFDM)] Frequency: 2.4 to 2.5 GHz                                                                                                                                      |                                                                                                                         |       |  |  |
|                                                                                                                                                                                                                                                                           |                                              |                                                                                                                                                                                                                                                                                                                                | ing 30 times, Temperature: +18                                                                                          | ·     |  |  |
|                                                                                                                                                                                                                                                                           | Modulation accuracy                          | ± (reference frequency accuracy) [IEEE802.11a, HiSWANa, HiperLAN2] Frequency: 2 to 2.5 GHz [IEEE802.11g (ERP-OFDM, DSSS-OFDM)] Frequency: 2.4 to 2.5 GHz                                                                                                                                                                       | [IEEE802.11a, HiSWANa, HiperLAN2] Frequency: 4.9 to 6 GHz [IEEE802.11g (ERP-OFDM, DSSS-OFDM)] Frequency: 2.4 to 2.5 GHz |       |  |  |
|                                                                                                                                                                                                                                                                           |                                              | Input level: -10 dBm, Averaging 30 times, Temperature: +18 to +35°C, 1.5 %rms (typ.)                                                                                                                                                                                                                                           |                                                                                                                         |       |  |  |
| Modulation                                                                                                                                                                                                                                                                | Display waveform                             | V.                                                                                                                                                                                                                                                                                                                             | number, EVM vs Sub-carrier nu                                                                                           | umber |  |  |
| analysis                                                                                                                                                                                                                                                                  | Constellation                                | Display format: 1) All, 2) First Symbol, 3) Last Symbol, 4) Pilot Only, 5) One Sub-Carrier, 6) Outside Pair (When "Target system: HiSWANa" and "Data rate: Auto" are set, 2) and 3) are not selectable) Error scale: 5%, 10%, 20%, 35%, OFF ("Error scale" is available when "Data rate" is not set to                         |                                                                                                                         |       |  |  |
|                                                                                                                                                                                                                                                                           | EVM vs symbol                                | "Auto" and "Modulation type" is set to "OFDM-BPSK" or "OFDM-QPSK")  Vertical line (full scale): 5%, 10%, 20%, 50%, 100%  Horizontal line: Symbol number, 1 to 1367 symbol                                                                                                                                                      |                                                                                                                         |       |  |  |
|                                                                                                                                                                                                                                                                           | EVM vs<br>sub-carrier                        | Vertical line (full scale): 5%, 10 Horizontal line: Sub-carrier nu                                                                                                                                                                                                                                                             | 0%, 20%, 50%, 100%                                                                                                      |       |  |  |
|                                                                                                                                                                                                                                                                           | Phase error vs                               | , ,                                                                                                                                                                                                                                                                                                                            | 10 deg, 20 deg, 50 deg, 100 deg                                                                                         |       |  |  |
|                                                                                                                                                                                                                                                                           | Spectrum flatness                            | Horizontal line: Symbol number, 1 to 1367 symbol  Vertical line (full scale): 5 dB, 10 dB, 20 dB, 50 dB, 100 dB  Horizontal line: Subscarrior number, 26 to 136                                                                                                                                                                |                                                                                                                         |       |  |  |
|                                                                                                                                                                                                                                                                           | Analysis length                              | Horizontal line: Sub-carrier number -26 to +26  Setting range: 1 to 1367 OFDM symbol  Setting resolution: 1 OFDM symbol  Setting method: Manual setting, Auto setting (at burst signal only. When "Data rate" is set to "Auto". HiperLAN2 is not supported.)                                                                   |                                                                                                                         |       |  |  |
|                                                                                                                                                                                                                                                                           | Analysis Start<br>Position<br>(HiSWANa only) | Setting range: 1 to [1367 — ("Analysis length" setting value) + 1] OFDM symbol Setting resolution: 1 OFDM symbol                                                                                                                                                                                                               |                                                                                                                         |       |  |  |
|                                                                                                                                                                                                                                                                           | Storage mode                                 | Normal: Refresh waveform/data for each measurement.  Average: Data display averages the result for the designated number of measurements.  Averaging count: 2 to 999. Waveform display is same as "Normal" mode.  Overwrite: Waveform is overwritten without erasing previous waveform. Data display is same as "Normal" mode. |                                                                                                                         |       |  |  |

## ■ IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM), HiSWANa<sup>(\*1)</sup>, HiperLAN2<sup>(\*2)</sup> 3/6

|          | Model                                | MX268130A                                                                                                                                                                                                                                                                                                                      | MX268330A                                                                                                                                                                                          | MX268730A                                                                                                                                     |  |  |
|----------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|          | Measurement frequency range          | 100 MHz to 3 GHz                                                                                                                                                                                                                                                                                                               | [IEEE802.11a, HiSWANa,<br>HiperLAN2]<br>100 MHz to 6 GHz,<br>100 MHz to 3 GHz<br>(Pre-amp On)<br>[IEEE802.11g<br>(ERP-OFDM, DSSS-OFDM)]<br>100 MHz to 3 GHz                                        | [IEEE802.11a, HiSWANa,<br>HiperLAN2]<br>100 MHz to 6 GHz<br>[IEEE802.11g<br>(ERP-OFDM, DSSS-OFDM)]<br>100 MHz to 3 GHz                        |  |  |
|          | Measurement level range              | -26 to +26 dBm, -46 to +26                                                                                                                                                                                                                                                                                                     | dBm (Pre-amp On)                                                                                                                                                                                   | -26 to +24 dBm                                                                                                                                |  |  |
|          | Measurement items <sup>(*3)</sup>    | Average power, Maximum po<br>burst signal)                                                                                                                                                                                                                                                                                     | wer, Carrier off power (at burst                                                                                                                                                                   | t signal), Burst on/off ratio (at                                                                                                             |  |  |
| RF Power |                                      | [IEEE802.11a, HiSWANa,<br>HiperLAN2]<br>Frequency: 2 to 2.5 GHz<br>[IEEE802.11g<br>(ERP-OFDM, DSSS-OFDM)]<br>Frequency: 2.4 to 2.5 GHz                                                                                                                                                                                         | Input level: −18 to 0 dBm,  Averaging 30 times  ≤±2.7 dB  [IEEE802.11g (ERP-OFDM, DSSS-OFDM)] Frequency: 2.4 to 2.5 GHz, Input level: −18 to 0 dBm,  −38 to 0dBm (Pre-amp On),  Averaging 30 times | [IEEE802.11a, HiSWANa,<br>HiperLAN2]<br>Frequency: 4.9 to 6 GHz,<br>Input level: -26 to 0 dBm,<br>Averaging 30 times                          |  |  |
|          | Burst average power accuracy         | Averaging 30 times  \( \leq \pm 1.7 \ dB \)  (Input level: -18 to 0 dBm)  \( \leq \pm 2.0 \ dB \)  (Pre-amp On,  Input level: -38 to 0 dBm)                                                                                                                                                                                    |                                                                                                                                                                                                    | ≤±2.9 dB<br>[IEEE802.11g<br>(ERP-OFDM, DSSS-OFDM)]<br>Frequency: 2.4 to 2.5 GHz,<br>Input level: −26 to 0 dBm,<br>Averaging 30 times ≤±1.9 dB |  |  |
|          | Burst rising detection method        | Selects from (1) and (2). (1) The rising edge is detected from change of a signal level. (2) The rising edge is detected from preamble signal (Preamble Search).                                                                                                                                                               |                                                                                                                                                                                                    |                                                                                                                                               |  |  |
|          | Burst signal length detection method | Selects from (1) and (2). (1) Input data length (2) The falling edge is detected from change of a signal level (Ramp-down Detection).                                                                                                                                                                                          |                                                                                                                                                                                                    |                                                                                                                                               |  |  |
|          | Slot display                         | A time domain waveform is displayed.  Vertical line: Unit = dBm, dB, %  Horizontal line  At burst signal: -20.0 us (fixed) to 5680.0 us (based on burst length)  At continuous signal: 0.0 us to 5660.0 us (fixed)                                                                                                             |                                                                                                                                                                                                    |                                                                                                                                               |  |  |
|          | Transient display                    | Displays zoom of the rising and falling edges of a slot.  Vertical line: Unit = dBm, dB, %  Horizontal line: 8.0 us to 40.0 us (setting resolution: 0.1 us)                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                                               |  |  |
|          | Analysis length                      | Setting range: 1 to 1367 OFDM symbol (DSSS-OFDM: 1 to 1300 OFDM symbol) Setting resolution: 1 OFDM symbol Setting method: Manual setting, Auto setting (at burst signal only.)                                                                                                                                                 |                                                                                                                                                                                                    |                                                                                                                                               |  |  |
|          | Storage mode                         | Normal: Refresh waveform/data for each measurement.  Average: Data display averages the result for the designated number of measurements.  Averaging count: 2 to 999. Waveform display is same as "Normal" mode.  Overwrite: Waveform is overwritten without erasing previous waveform. Data display is same as "Normal" mode. |                                                                                                                                                                                                    |                                                                                                                                               |  |  |

## ■ IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM), HiSWANa<sup>(\*1)</sup>, HiperLAN2<sup>(\*2)</sup> 4/6

|                                         | Model                 | MX268130A                                                                                                                                                                                                                                                                                                                                                                                                                            | MX268330A                                                                                                                                                   | MX268730A                                                                                                              |  |  |
|-----------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Occupied frequency                      | Frequency range       | 100 MHz to 3 GHz                                                                                                                                                                                                                                                                                                                                                                                                                     | [IEEE802.11a, HiSWANa,<br>HiperLAN2]<br>100 MHz to 6 GHz,<br>100 MHz to 3 GHz<br>(Pre-amp On)<br>[IEEE802.11g<br>(ERP-OFDM, DSSS-OFDM)]<br>100 MHz to 3 GHz | [IEEE802.11a, HiSWANa,<br>HiperLAN2]<br>100 MHz to 6 GHz<br>[IEEE802.11g<br>(ERP-OFDM, DSSS-OFDM)]<br>100 MHz to 3 GHz |  |  |
| bandwidth                               | Reference level range | -26 to +26 dBm, -46 to +26                                                                                                                                                                                                                                                                                                                                                                                                           | dBm (Pre-amp On)                                                                                                                                            | -26 to +24 dBm                                                                                                         |  |  |
|                                         | Measurement method.   | BW (99%): 99% of the total radiation power is defined as the contained frequency width.                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                             |                                                                                                                        |  |  |
|                                         | Storage mode          | Normal: Displays the measured result value and waveform after every measurement.  Average: Data display averages the result for the designated number of measurements.  Averaging count: 2 to 999. Waveform display is same as "Normal" mode.                                                                                                                                                                                        |                                                                                                                                                             |                                                                                                                        |  |  |
|                                         | Target system         | IEEE802.11a, HiSWANa, HiperLAN2                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                             |                                                                                                                        |  |  |
|                                         | Frequency range       | 100 MHz to 3 GHz                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 MHz to 6 GHz,<br>100 MHz to 3 GHz<br>(Pre-amp On)                                                                                                       | 100 MHz to 6 GHz                                                                                                       |  |  |
|                                         | Reference level range | -16 to +26 dBm, -36 to +26                                                                                                                                                                                                                                                                                                                                                                                                           | dBm (Pre-amp On)                                                                                                                                            | -16 to +24 dBm                                                                                                         |  |  |
| Adjacent<br>channel<br>leakage<br>power | Measurement method    | Sweep method (All):  After measuring the signal range including upper/lower second adjacent channels at a tin with the sweep type spectrum analyzer, performs calculation of adjacent/second adjacent channels and displays the result.  Sweep method (Separate):  After measuring adjacent channel and the channel next to the adjacent channel with the sweep type spectrum analyzer performs calculation and displays the result. |                                                                                                                                                             |                                                                                                                        |  |  |
|                                         | Storage mode          | Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated number measurements. Averaging count: 2 to 999. Waveform display is same as "Norm mode.                                                                                                                                                                                                                 |                                                                                                                                                             |                                                                                                                        |  |  |

## ■ IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM), HiSWANa<sup>(\*1)</sup>, HiperLAN2<sup>(\*2)</sup> 5/6

|              | Model                 | MX268130A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MX268330A                                                                                                                                                   | MX268730A                                                                                                              |  |
|--------------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--|
| Spectrum     | Frequency range       | 100 MHz to 3 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [IEEE802.11a, HiSWANa,<br>HiperLAN2]<br>100 MHz to 6 GHz,<br>100 MHz to 3 GHz<br>(Pre-amp On)<br>[IEEE802.11g<br>(ERP-OFDM, DSSS-OFDM)]<br>100 MHz to 3 GHz | [IEEE802.11a, HiSWANa,<br>HiperLAN2]<br>100 MHz to 6 GHz<br>[IEEE802.11g<br>(ERP-OFDM, DSSS-OFDM)]<br>100 MHz to 3 GHz |  |
| mask         | Reference level range | -16  to  +26  dBm, -36  to  +26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dBm (Pre-amp On)                                                                                                                                            | -16 to +24 dBm                                                                                                         |  |
|              | Template              | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mask defined in IEEE std 802.1<br>bitrary spectrum mask is also av                                                                                          |                                                                                                                        |  |
|              | Storage mode          | Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated n measurements. Averaging count: 2 to 999. Waveform display is same as mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                             |                                                                                                                        |  |
|              | Frequency range       | 9 kHz to 3 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9 kHz to 7.8 GHz                                                                                                                                            | 9 kHz to 30 GHz                                                                                                        |  |
|              | Reference level range | -6 to +26 dBm -6 to +24 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                        |  |
| Spurious     | Measurement<br>method | Sweep method:  Detects and displays the peak value after sweeping the designated frequency range with the spectrun analyzer. Calculates and displays the ratio to the transmitted power value (power ratio). Detection mode is Positive peak.  Spot method:  Displays the average value after measuring the designated frequency in time domein of the spectrum analyzer. Calculates and displays the ratio to the transmitted power value (power ratio). Detection mode is Sample.  Search method:  Measures the frequency in time domein and displays the average value after sweeping the designated frequency range with the spectrum analyzer and detecting the peak value. Calculates and displays the ratio to the transmitted power value (power ratio). Detection |                                                                                                                                                             |                                                                                                                        |  |
| Storage mode |                       | mode is Sample.  Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as "Normal" mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                             |                                                                                                                        |  |

## ■ IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM), HiSWANa<sup>(\*1)</sup>, HiperLAN2<sup>(\*2)</sup> 6/6

| Model                                     |                                          | MX268130A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MX268330A                                             | MX268730A        |  |
|-------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------|--|
|                                           | Frequency range                          | 100 MHz to 3 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100 MHz to 6 GHz,<br>100 MHz to 3 GHz<br>(Pre-amp On) | 100 MHz to 6 GHz |  |
|                                           | Reference level range                    | -26 to $+26$ dBm, $-46$ to $+26$ dBm (Pre-amp On) $-26$ to $+24$ dBm                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                  |  |
|                                           | Measurement method                       | CCDF: Displays cumulative distribution of difference between instantaneous power and average power.  APD: Displays distribution of difference between instantaneous power and average power.                                                                                                                                                                                                                                                                                                         |                                                       |                  |  |
|                                           | Data count                               | 10,000 to 2,000,000,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                  |  |
|                                           | Analysis time                            | 0.001 to 100 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                  |  |
| CCDF                                      | Filter Selection                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MHz, 3 MHz, RRC: α= 0.22, RC:                         | $\alpha = 0.22$  |  |
|                                           | Trigger                                  | Free run: Regardless of the state of an input signal, a signal is taken in continuously.  Wide IF: A signals is taken in synchronizing with a video signal.  Trigger edge: Rise, Fall  Trigger delay: -10000 to +10000 us  Trigger level: High, Middle, Low  External: A signals is taken in synchronizing with the trigger signal inputted into "Trig/Gate In" connector on the back.  Trigger edge: Rise, Fall  Trigger delay: -10000 to +10000 us                                                 |                                                       |                  |  |
| Batch<br>measure-<br>ment <sup>(*4)</sup> | Measurement items  Judgement             | Frequency accuracy, EVM-RMS, EVM-Peak, Phase error-RMS, Carrier leak, Spectrum flatness (at burst signal), TX-power, Carrier off power (at burst signal), On/Off ratio (at burst signal), Occupied frequency bandwidth, Adjacent channel leakage power, Spectrum mask, Spurious (Two tables can be chosen)  *"Adjacent channel leakage power" can be measued complying with "IEEE802.11a, HiSWANa, HiperLAN2".  According to the judgement value set per measurement item, PASS or FAIL judgement is |                                                       |                  |  |
|                                           | _                                        | automatically performed for ea                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                  |  |
|                                           | Target System                            | IEEE802.11a, IEEE802.11g(E                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |                  |  |
|                                           | Frequency range  Measurement level range | 100 MHz to 3 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       |                  |  |
|                                           | Analysis length                          | 250 to 1000 OFDM symbol (Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tting resolution : 1 OFDM symb                        | ool)             |  |
|                                           | Measurement range                        | 0.0 to 50.0 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                       |                  |  |
| Symbol                                    | Measurement resolution                   | 0.1 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                  |  |
| rate error<br>measure-m<br>ent            | Measurement accuracy                     | [IEEE802.11a] Frequency: 2 to 2.5 GHz [IEEE802.11g(ERP-OFDM, DSSS-OFDM)] Frequency: 2.4 to 2.5 GHz $\pm$ (reference oscillator $\times$ 10 <sup>6</sup> + 1.0) ppm per OFDM symbol rate(250 kHz[ = (4 us) <sup>-1</sup> ]).                                                                                                                                                                                                                                                                          |                                                       |                  |  |
|                                           | Storage mode                             | Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as "Normal" mode.                                                                                                                                                                                                                                                                           |                                                       |                  |  |

### ■ IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) 1/4

- ${\bf *1:}\ When \ burst \ interval \ is \ 20 \ us \ or \ less, \ the \ Wireless \ LAN \ software \ cannot \ measure \ the \ following \ item \ rightly:$ 
  - 1) Carrier off power, 2) On/Off ratio and 3) Burst rising/falling time.

|                 | Model                              | MX268130A                                                                                                                                                                                                                  | MX268330A                                                      | MX268730A                      |  |
|-----------------|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------|--|
| Modulation type |                                    | CCK, DQPSK, DBPSK                                                                                                                                                                                                          |                                                                |                                |  |
| Data rate       |                                    | 11, 5.5, 2, 1 Mbps, Auto (at bur                                                                                                                                                                                           | est signal only)                                               |                                |  |
| Filter          |                                    | No Filter Gaussian BT= 0.3 to 1.0 (setting resolution: 0.1) Rectangular Root Raised Cosine $\alpha$ = 0.30 to 1.00 (setting resolution: 0.01)                                                                              |                                                                |                                |  |
|                 | Measurement items                  | 1 0                                                                                                                                                                                                                        | cy, Carrier frequency error<br>e error-RMS, Amplitude error-RI | *                              |  |
|                 | Frequency range                    | 100 MHz to 3 GHz                                                                                                                                                                                                           |                                                                |                                |  |
|                 | Measurement frequency intake range | Temperature:+18° to +35°C, se                                                                                                                                                                                              | etting frequency ±80 kHz                                       |                                |  |
|                 | Measurement level range            | -26 to +26 dBm, -46 to +26 d                                                                                                                                                                                               | dBm (Pre-amp On)                                               | -26 to +24 dBm                 |  |
|                 | Carrier frequency accuracy         | Frequency: 2.4 to 2.5 GHz, Input level: -10 dBm, Averaging: 30 times, Temperature: +18 to +35°C ± (reference frequency accuracy × setting frequency +200 Hz)                                                               |                                                                |                                |  |
|                 | Modulation accuracy                | Frequency: 2.4 to 2.5 GHz, Input level: -10 dBm, Averaging: 30 times, Temperature: +18 to +35°C                                                                                                                            |                                                                |                                |  |
|                 |                                    | 2.3 %rms (typ.)                                                                                                                                                                                                            |                                                                |                                |  |
| Modulation      | Display waveform                   | , 1                                                                                                                                                                                                                        | mber, Phase error vs chip numb                                 | , , ,                          |  |
| analysis        | Constellation                      |                                                                                                                                                                                                                            | 6, OFF (It is available when "Da                               | ta rate" is not set to "Auto") |  |
|                 | EVM vs chip                        | Vertical line (full scale): 5%, 10%, 20%, 50%, 100%                                                                                                                                                                        |                                                                |                                |  |
|                 |                                    | Horizontal line: Chip number 256 to 4096 chip                                                                                                                                                                              |                                                                |                                |  |
|                 | Phase error vs.                    |                                                                                                                                                                                                                            | 10 deg, 20 deg, 50 deg, 100 deg                                |                                |  |
|                 | chip                               | Horizontal line: Chip number 2                                                                                                                                                                                             | -                                                              |                                |  |
|                 |                                    | Setting range: 256 to 4096 chip                                                                                                                                                                                            | )                                                              |                                |  |
|                 | Analysis length                    | Setting resolution: 1 chip Setting method: manual setting, auto setting (at burst signal only. When "Data rate" is set as "Auto.")                                                                                         |                                                                |                                |  |
|                 |                                    | ·                                                                                                                                                                                                                          | es for each measurement                                        |                                |  |
|                 | Storage mode                       | Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as "Normal" mode. |                                                                |                                |  |
|                 |                                    | Overwrite: Waveform is overwritten without erasing previous waveform. Data display is same as "Normal" mode.                                                                                                               |                                                                |                                |  |

### ■ IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) 2/4

|                              | Model                                | MX268130A                                                                                                                                                                                                                                                                 | MX268330A                                                                                                                                            | MX268730A                                                                                  |  |
|------------------------------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|
|                              | Frequency range                      | 100 MHz to 3 GHz                                                                                                                                                                                                                                                          |                                                                                                                                                      |                                                                                            |  |
|                              | Measurement level range              | -26 to +26 dBm, -46 to +26 d                                                                                                                                                                                                                                              | dBm (Pre-amp On)                                                                                                                                     | -26 to +24 dBm                                                                             |  |
|                              | Measurement items(*1)                |                                                                                                                                                                                                                                                                           | Average power, Maximum Power, carrier off power (at burst signal), burst on/off ratio (at burst signal), burst rising/falling time (at burst signal) |                                                                                            |  |
|                              | Burst average power accuracy         | Frequency: 2.4 to 2.5 GHz, Averaging 30 times  \$\leq \pma1.7 dB (Input level: -18 to 0 dBm),  \$\leq \pma2.0 dB (Pre-amp On, Input level: -38 to 0 dBm)  Averaging 30 times                                                                                              |                                                                                                                                                      | Frequency: 2.4 to 2.5 GHz,<br>Input level: −26 to 0 dBm,<br>Averaging 30 times<br>≤±1.9 dB |  |
|                              | Burst rising detection method        | Selects from (1) and (2). (1) The rising edge is detected (2) The rising edge is detected                                                                                                                                                                                 | from change of a signal level.<br>from preamble signal (Preamble                                                                                     | e Search).                                                                                 |  |
|                              | Burst signal length detection method | Selects from (1) and (2). (1) Input data length (2) The falling edge is detected                                                                                                                                                                                          | from change of a signal level (R                                                                                                                     | amp-down Detection).                                                                       |  |
| RF Power                     | Slot display                         | A time domain waveform is displayed.  Vertical line: Unit = dBm, dB, %  Horizontal line  At burst signal: -20.0 us (fixed) to 5680.0 us (based on burst length)  At continuous signal: 0.0 us to 5660.0 us (fixed)                                                        |                                                                                                                                                      |                                                                                            |  |
|                              | Transient display                    | Displays zoom of the rising and falling edges of a slot.  Vertical line: Unit = dBm, dB, %  Horizontal line: 8.0 us to 40.0 us (setting resolution: 0.1 us)                                                                                                               |                                                                                                                                                      |                                                                                            |  |
|                              | Analysis length                      | Setting range: 256 to 4096 chip Setting resolution: 1 chip Setting method: Manual setting, Auto setting (at burst signal only.)                                                                                                                                           |                                                                                                                                                      |                                                                                            |  |
|                              | Storage mode                         | Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated nu                                                                                                                                           |                                                                                                                                                      |                                                                                            |  |
|                              | Frequency range                      | 100 MHz to 3 GHz                                                                                                                                                                                                                                                          |                                                                                                                                                      |                                                                                            |  |
|                              | Reference level range                | -26 to +26 dBm, -46 to +26 d                                                                                                                                                                                                                                              | dBm (Pre-amp On)                                                                                                                                     | -26 to +24 dBm                                                                             |  |
| Occupied frequency bandwidth | Measurement method                   | BW (99%): 99% of the total radiation power is defined as the contained frequency width.  BW (90%): Frequency bandwidth containing 90% of the total radiation power. This value is called "spreading bandwidth" in TELEC's Technical Regulations Conformity Certification. |                                                                                                                                                      | radiation power. This value is                                                             |  |
|                              | Storage mode                         | Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as "Norma mode.                                                  |                                                                                                                                                      |                                                                                            |  |

### ■ IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) 3/4

|                  | Model                 | MX268130A                                                                                                                                                                                                                                                                             | MX268330A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MX268730A                                                                                                                 |  |  |
|------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|
|                  | Frequency range       | 100 MHz to 3 GHz                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |
|                  | Reference level range | -16 to $+26$ dBm, $-36$ to $+26$ dBm (Pre-amp On) $-16$ to $+24$ dBm                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |
| Spectrum<br>mask | Template              |                                                                                                                                                                                                                                                                                       | Corresponds to the spectrum mask defined in IEEE std 802.11b-1999 18.4.7.3 and IEEE std 802.11g-2003 19.5.4/19.7.2. Arbitrary spectrum mask is also available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                           |  |  |
| maok             |                       | Normal: Refresh waveform/da                                                                                                                                                                                                                                                           | ta for each measurement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                           |  |  |
|                  | Storage mode          | Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as "Normal" mode.                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |
|                  | Frequency range       | 9 kHz to 3 GHz                                                                                                                                                                                                                                                                        | 9 kHz to 7.8 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9 kHz to 30 GHz                                                                                                           |  |  |
|                  | Reference level range | -6 to +26 dBm                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -6 to + 24 dBm                                                                                                            |  |  |
|                  |                       | Sweep method:                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                                                                                                         |  |  |
| Spurious         | Measurement method    | the spectrun analyzer. Calc<br>(power ratio). Detection mod<br>Spot method:<br>Displays the average value a                                                                                                                                                                           | ulates and displays the ratio to be is Positive peak.  Ifter measuring the designated is and displays the ratio to the feet and displays the ratio the feet and displays the ratio to the feet and displays the ratio the feet and displays the ratio the feet and displays the ratio the feet and displ | esignated frequency range with the transmitted power value frequency in time domein of the transmitted power value (power |  |  |
|                  |                       | Search method:                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |
|                  |                       | Measures the frequency in time domein and displays the average value after sweeping the designated frequency range with the spectrum analyzer and detecting the peak value. Calculates and displays the ratio to the transmitted power value (power ratio). Detection mode is Sample. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |
|                  |                       | Normal: Refresh waveform/data for each measurement.                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |
|                  | Storage mode          |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for the designated number of<br>m display is same as "Normal"                                                             |  |  |
|                  | Frequency range       | 100 MHz to 3 GHz                                                                                                                                                                                                                                                                      | 100 MHz to 6 GHz,<br>100 MHz to 3 GHz<br>(Pre-amp On)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100 MHz to 6 GHz                                                                                                          |  |  |
|                  | Reference level range | -26 to +26 dBm, -46 to +26 dB                                                                                                                                                                                                                                                         | 3m (Pre-amp On)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -26 to +24 dBm                                                                                                            |  |  |
|                  | Measurement           | CCDF: Displays cumulative average power.                                                                                                                                                                                                                                              | distribution of difference betw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | veen instantaneous power and                                                                                              |  |  |
|                  | method                | APD: Displays distribution of difference between instantaneous power and average power.                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |
|                  | Data count            | 10,000 to 2,000,000,000                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |
|                  | Analysis time         | 0.001 to 100 ms                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |
| CCDF             | Filter Selection      |                                                                                                                                                                                                                                                                                       | MHz, 3 MHz, RRC: α= 0.22, RC:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\alpha = 0.22$                                                                                                           |  |  |
|                  |                       |                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |
|                  |                       | Free run: Regardless of the state of an input signal, a signal is taken in continuously.  Wide IF: A signals is taken in synchronizing with a video signal.                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |
|                  |                       | Trigger edge: Rise, Fall                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |
|                  |                       | Trigger delay: -10000 to +                                                                                                                                                                                                                                                            | 10000 us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                           |  |  |
|                  | Trigger               | Trigger level: High, Middle,                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |
|                  |                       | "Trig/Gate In" connector on                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | trigger signal inputted into a                                                                                            |  |  |
|                  |                       | Trigger edge: Rise, Fall                                                                                                                                                                                                                                                              | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                           |  |  |
|                  |                       | Trigger delay: -10000 to +10000 us                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                           |  |  |

### ■ IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) 4/4

|                                 | Model                   | MX268130A                                                                                                                                                                                                                                                                                                       | MX268330A                                                                                                                               | MX268730A |  |  |
|---------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
| Batch<br>measure-<br>ment       | Measurement items       | Frequency accuracy, EVM-RMS, EVM-Peak, Phase error-RMS, Amplitude error-RMS, Origin offset, TX-power, Carrier off power (at burst signal), On/Off ratio (at burst signal), Burst signal rising/falling time (at burst signal), Occupied frequency bandwidth, Spectrum mask, Spurious (Two tables can be chosen) |                                                                                                                                         |           |  |  |
| ment                            | Judgement               |                                                                                                                                                                                                                                                                                                                 | According to the judgement value set per measurement item, PASS or FAIL judgement is automatically performed for each measurement item. |           |  |  |
|                                 | Frequency range         | 100 MHz to 3 GHz                                                                                                                                                                                                                                                                                                |                                                                                                                                         |           |  |  |
|                                 | Measurement level range | -26 to +26 dBm -26 to +24 dBm                                                                                                                                                                                                                                                                                   |                                                                                                                                         |           |  |  |
|                                 | Analysis length         | 11,000 to 44,000 chip (setting resolution: 1 chip)                                                                                                                                                                                                                                                              |                                                                                                                                         |           |  |  |
|                                 | Measurement range       | $0.0$ to $\pm 50.0$ ppm                                                                                                                                                                                                                                                                                         |                                                                                                                                         |           |  |  |
| Chip clock<br>error<br>measure- | Measurement resolution  | 0.1 ppm                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |           |  |  |
| ment                            | Management              | Carrier frequency: 2.4 to 2.5 G                                                                                                                                                                                                                                                                                 | Hz,                                                                                                                                     |           |  |  |
|                                 | Measurement accuracy    | $\pm$ (reference frequency accracy $\times$ 10 <sup>6</sup> + 1.0) ppm                                                                                                                                                                                                                                          |                                                                                                                                         |           |  |  |
|                                 | docuracy                | per chip rate(11 MHz).                                                                                                                                                                                                                                                                                          |                                                                                                                                         |           |  |  |
|                                 |                         | Normal: Refresh waveform/dat                                                                                                                                                                                                                                                                                    | ta for each measurement.                                                                                                                |           |  |  |
|                                 | Storage mode            | Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as "Normal" mode.                                                                                                                                           |                                                                                                                                         |           |  |  |

### ■ Electric performance (IQ input)

| Model                                                                                                                                     | MX268130A                                                                                             | MX268330A                                                                                                                                                   | MX268730A |  |
|-------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Input impedance                                                                                                                           | 1 MΩ (parallel capacitance <100                                                                       | pF), 50Ω                                                                                                                                                    | •         |  |
| Balance input                                                                                                                             | With MS2681A-17/MS2683A-17<br>Differential voltage: 0.1 to 1 Vpp<br>In-phase voltage: ±2.5 V (input t | (input terminals)                                                                                                                                           |           |  |
| Unbalance input                                                                                                                           | With MS2681A-18/MS2683A-18<br>0.1 to 1 Vpp (input terminals)<br>DC/AC coupling Changeable             | With MS2681A-18/MS2683A-18<br>0.1 to 1 Vpp (input terminals)                                                                                                |           |  |
|                                                                                                                                           | ,                                                                                                     | [IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM)]  Modulation accuracy/frequency, RF power, CCDF, Batch measurement, IQ level, Symbol rate error measurement |           |  |
| Measurement items                                                                                                                         | [HiSWANa, HiperLAN2] Modulation accuracy/frequency,                                                   | [HiSWANa, HiperLAN2] Modulation accuracy/frequency, RF power, CCDF, Batch measurement, IQ level                                                             |           |  |
| [IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)]  Modulation accuracy/frequency, RF power, CCDF, Batch measurement, IQ level, Cerror measurement |                                                                                                       | easurement, IQ level, Chip clock                                                                                                                            |           |  |
| I/Q level measurement                                                                                                                     | Measures input level of I and Q                                                                       | Measures input level of I and Q (rms, p-p)                                                                                                                  |           |  |
| I/Q phase difference measurement                                                                                                          |                                                                                                       | When the CW signal is inputted to I and Q input terminals, measures and displays the phase difference between I-phase and Q-phase signals.                  |           |  |

Specified values are obtained after warming up the equipment for 30 minutes at a constant ambient temperature and then performing calibration.

Guaranteed specifications after Adjust Range and Level Calibration keys pressed.

Pre-amp On can be set when MS8608A-08 and MS8609A-08 are installed in the main frame.

### ■ IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM), HiSWANa<sup>(\*1)</sup>, HiperLAN2<sup>(\*2)</sup> 1/6

- \*1: HiSWANa cannot carry out the following measurement.
  - 1) Measurement for every MAC frame
  - 2) Measurement of a signal whose cyclic prefix duration is not 800 ns
  - 3) Measurement of a continuous signal whose modulation type is not constant.
- \*2: HiperLAN2 cannot carry out the following measurement.
  - 1) The same measurement as '\*1'.
  - 2) Measurement of a burst signal whose modulation type on payload is not constant.
  - 3) Measurement of power time mask.
- \*3: When burst interval is 20 us or less, the Wireless LAN software cannot measure the following item rightly:
  - 1) Carrier off power, 2) On/Off ratio.
- \*4: "Batch measurement" function cannot carry out when "Target system: HiSWANa" and "Data rate: Auto" are set.

|                     | Model                   | MX860830A                                                                                                                                                                                                                             | MX860930A                                                                             |  |
|---------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| Modulation type     |                         | OFDM-64QAM, OFDM-16QAM, OFDM-QPSK,OFDM-BPSK                                                                                                                                                                                           |                                                                                       |  |
| Data rate           |                         | [IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM)] 54, 48, 36, 24, 18, 12, 9, 6 Mbps, Auto(at burst signal only) [HiSWANa] 54, 36, 27, 18, 12, 9, 6 Mbps, Auto(at burst signal only)                                                    |                                                                                       |  |
|                     |                         | [HiperLAN2] 54, 36, 27, 18, 12, 9, 6 Mbps                                                                                                                                                                                             |                                                                                       |  |
|                     | Measurement items       | 1 0                                                                                                                                                                                                                                   | equency error), Modulation characteristic<br>5),OFDM-spectrum (carrier leak, spectrum |  |
|                     | Frequency range         | [IEEE802.11a, HiSWANa, HiperLAN2] 100 MHz to 6 GHz, 100 MHz to 3 GHz (Pre-amp On) [IEEE802.11g (ERP-OFDM, DSSS-OFDM)]                                                                                                                 |                                                                                       |  |
|                     |                         | 100MHz to 3GHz                                                                                                                                                                                                                        |                                                                                       |  |
| Modulation analysis | Measurement             | [IEEE802.11a, HiSWANa, HiperLAN2] Temperature: +18 to +35°C, setting frequency ±120kHz (3 to 6GHz), ±80 kHz (100 MHz to 3 GHz)                                                                                                        |                                                                                       |  |
|                     | frequency intake range  | [IEEE802.11g (ERP-OFDM, DSSS-OFDM)] setting frequency ±80 kHz                                                                                                                                                                         | Temperature: +18 to +35°C,                                                            |  |
|                     | Measurement level range | $\begin{array}{c} \mbox{High Input:} \\ -6\mbox{ to } +38\mbox{ dBm,} \\ -26\mbox{ to } +38\mbox{ dBm (Pre-amp On)} \\ \mbox{Low Input:} \\ -26\mbox{ to } +18\mbox{ dBm,} \\ -46\mbox{ to } +18\mbox{ dBm (Pre-amp On)} \end{array}$ | -26 to +18 dBm,<br>-26 to +26 dBm (With Opt. 32),<br>-46 to +18 dBm (Pre-amp On)      |  |

### ■ IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM), HiSWANa<sup>(\*1)</sup>, HiperLAN2<sup>(\*2)</sup> 2/6

| Model               |                                        | MX860830A                                                                                                                                                                                                                                                                                                                                                                 | MX860930A                                                                   |  |  |
|---------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|
|                     | Carrier frequency accuracy             | [IEEE802.11a, HiSWANa, HiperLAN2] Frequ<br>[IEEE802.11g(ERP-OFDM, DSSS-OFDM)] Fr<br>Input level: -10 dBm, (MS8608A:Low Input<br>Temperature: +18 to +35°C,<br>± (reference frequency accuracy × setting fre                                                                                                                                                               | requency: 2.4 to 2.5 GHz O Averaging 30 times,                              |  |  |
|                     | Modulation accuracy                    | [IEEE802.11a, HiSWANa, HiperLAN2] Frequ<br>[IEEE802.11g (ERP-OFDM, DSSS-OFDM)] F<br>Input level: -10 dBm (MS8608A: Low Input<br>Temperature: +18 to +35°C<br>1.5 %rms (typ.)                                                                                                                                                                                              | uency: 4.9 to 6 GHz<br>requency: 2.4 to 2.5 GHz                             |  |  |
|                     | Display waveform                       | Constellation, EVM vs symbol number, EVM<br>Phase error vs symbol number, spectrum flat:                                                                                                                                                                                                                                                                                  |                                                                             |  |  |
|                     | Constellation                          | Display format: 1) All, 2) First Symbol, 3) Last Symbol, 4) Pilot Only, 5) One Sub-Carrier 6) Outside Pair (When "Target system: HiSWANa" and "Data rate: Auto" are set, 2) and 3) are not selectable)  Error scale: 5%, 10%, 20%, 35%, OFF ("Error scale" is available when "Data rate" is not set to "Auto" and "Modulation type" is set to "OFDM-BPSK" of "OFDM-QPSK") |                                                                             |  |  |
| Modulation analysis | EVM vs symbol                          | Vertical line (full scale): 5%, 10%, 20%, 50%, Horizontal line: Symbol number, 1 to 1367 sy                                                                                                                                                                                                                                                                               |                                                                             |  |  |
|                     | EVM vs sub-carrier                     | Vertical line (full scale): 5%, 10%, 20%, 50%, Horizontal line: Sub-carrier number —26 to -                                                                                                                                                                                                                                                                               |                                                                             |  |  |
|                     | Phase error vs symbol                  | Vertical line (full scale): 5 deg, 10 deg, 20 deg<br>Horizontal line: Symbol number, 1 to 1367 sy.                                                                                                                                                                                                                                                                        |                                                                             |  |  |
|                     | Spectrum flatness                      | Vertical line (full scale): 5 dB, 10 dB, 20 dB, 4<br>Horizontal line: Sub-carrier number -26 to-                                                                                                                                                                                                                                                                          | *                                                                           |  |  |
|                     | Analysis length                        | Setting range: 1 to 1367OFDM symbol Setting resolution: 10FDM symbol Setting method: Manual setting, Auto setting (at burst signal only. When "Data raset to "Auto". HiperLAN2 is not supported.)                                                                                                                                                                         |                                                                             |  |  |
|                     | Analysis start position (HiSWANa only) | Setting range: 1 to [1367 — ("Analysis length Setting resolution: 1 OFDM symbol"                                                                                                                                                                                                                                                                                          | th" setting value) + 1] OFDM symbol                                         |  |  |
|                     | Storage mode                           | Normal: Refresh waveform/data for each mea<br>Average: Data display averages the result fo<br>Averaging count: 2 to 999. Waveform<br>Overwrite: Waveform is overwritten without<br>same as "Normal" mode.                                                                                                                                                                 | or the designated number of measurements. display is same as "Normal" mode. |  |  |

## ■ IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM), HiSWANa<sup>(\*1)</sup>, HiperLAN2<sup>(\*2)</sup> 3/6

|          | Model                                | MX860830A                                                                                                                                                                                                          | MX860930A                                                                       |  |
|----------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|
|          | Measurement                          | [IEEE802.11a, HiSWANa, HiperLAN2]<br>100 MHz to 6 GHz, 100 MHz to 3 GHz (Pre-amp On)                                                                                                                               |                                                                                 |  |
|          | frequency range                      | [IEEE802.11g (ERP-OFDM, DSSS-OFDM)]<br>100 MHz to 3 GHz                                                                                                                                                            |                                                                                 |  |
|          | Measurement level range              | High Input:  -6 to +38 dBm,  -26 to +38 dBm (Pre-amp On)  Low Input:  -26 to +18 dBm,  -46 to +18 dBm (Pre-amp On)                                                                                                 | -26 to +18 dBm,<br>-26 to +26 dBm (With Opt.32),<br>-46 to +18 dBm (Pre-amp On) |  |
|          | Measurement items <sup>(*3)</sup>    | Average power, Maximum power, Carrier o (at burst signal)                                                                                                                                                          | ff power (at burst signal), Burst on/off ratio                                  |  |
|          |                                      | (MS8608A: Low Input)  [IEEE802.11a, HiSWANa, HiperLAN2]  Frequency: 4.9 to 6 GHz, Input level: -18 to                                                                                                              | o 0 dBm, Averaging 30 times                                                     |  |
|          | Burst average power accuracy         | ≤±2.7 dB  [IEEE802.11g (ERP-OFDM, DSSS-OFDM)]  Frequency: 2.4 to 2.5 GHz, Input level: −18 to 0 dBm, −38 to 0dBm (Pre-amp On), Averaging 30 times ≤±1.7 dB, ≤±2.0 dB (Pre-amp On)                                  |                                                                                 |  |
| RF Power | Burst rising detection method        | Selects from (1) and (2). (1) The rising edge is detected from change of a signal level. (2) The rising edge is detected from preamble signal (Preamble Search).                                                   |                                                                                 |  |
|          | Burst signal length detection method | Selects from (1) and (2). (1) Input data length (2) The falling edge is detected from change of a signal level (Ramp-down Detection).                                                                              |                                                                                 |  |
|          | Slot display                         | A time domain waveform is displayed.  Vertical line: Unit = dBm, dB, %  Horizontal line  At burst signal: -20.0 us (fixed) to 5680.0 us (based on burst length)  At continuous signal: 0.0 us to 5660.0 us (fixed) |                                                                                 |  |
|          | Transient display                    | Displays zoom of the rising and falling edges of a slot.  Vertical line: Unit = dBm, dB, %  Horizontal line: 8.0 us to 40.0 us (setting resolution: 0.1 us)                                                        |                                                                                 |  |
|          | Analysis length                      | Setting range: 1 to 1367 OFDM symbol (DSSS-OFDM: 1 to 1300 OFDM symbol) Setting resolution: 1 OFDM symbol Setting method: Manual setting, Auto setting (at burst signal only.)                                     |                                                                                 |  |
|          | Storage mode                         | Normal: Refresh waveform/data for each me<br>Average: Data display averages the result f<br>Averaging count: 2 to 999. Waveform                                                                                    | asurement. or the designated number of measurements.                            |  |

## ■ IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM), HiSWANa<sup>(\*1)</sup>, HiperLAN2<sup>(\*2)</sup> 4/6

|                                         | Model                 | MX860830A                                                                                                                                                                                                                                                                                                                                              | MX860930A                                                                                                                                                                                                                                            |  |  |
|-----------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                         |                       | [IEEE802.11a, HiSWANa, HiperLAN2]<br>100 MHz to 6 GHz, 100 MHz to 3 GHz (Pre-amp On)                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                      |  |  |
|                                         | Frequency range       | [IEEE802.11g(ERP-OFDM, DSSS-OFDM)]<br>100 MHz to 3 GHz                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                      |  |  |
| Occupied frequency bandwidth            | Reference level range | High Input:  -6 to +38 dBm,  -26 to +38 dBm (Pre-amp On)  Low Input:  -26 to +18 dBm,  -46 to +18 dBm (Pre-amp On)                                                                                                                                                                                                                                     | -26 to +18 dBm,<br>-26 to +26 dBm (With Opt.32),<br>-46 to +18 dBm (Pre-amp On)                                                                                                                                                                      |  |  |
|                                         | Measurement method    | BW (99%): 99% of the total radiation power is                                                                                                                                                                                                                                                                                                          | is defined as the contained frequency width.                                                                                                                                                                                                         |  |  |
|                                         | Storage mode          | Average: Displays the measured result val                                                                                                                                                                                                                                                                                                              | Normal: Displays the measured result value and waveform after every measurement.  Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as Normal mode |  |  |
|                                         | Target system         | IEEE802.11a, HiSWANa, HiperLAN2                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                      |  |  |
|                                         | Frequency range       | 100 MHz to 6 GHz, 100 MHz to 3 GHz (Pre-a                                                                                                                                                                                                                                                                                                              | amp On)                                                                                                                                                                                                                                              |  |  |
|                                         | Reference level range | High Input:  +4 to +38 dBm,  -16 to +38 dBm (Pre-amp On)  Low Input:  -16 to +18 dBm,  -36 to +18 dBm (Pre-amp On)                                                                                                                                                                                                                                     | -16 to +18 dBm,<br>-16 to +26 dBm (With Opt. 32),<br>-36 to +18 dBm (Pre-amp On)                                                                                                                                                                     |  |  |
| Adjacent<br>channel<br>leakage<br>power | Measurement<br>method | Sweep method (All):  After measuring the signal range including upper/lower second adjacent channels at a time with the sweep type spectrum analyzer, performs calculation of adjacent/second adjacent channels and displays the result.  Sweep method (Separate):  After measuring adjacent channel and the channel next to the adjacent channel with |                                                                                                                                                                                                                                                      |  |  |
|                                         | Storage mode          | the sweep type spectrum analyzer performs calculation and displays the result.  Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as Normal mode.                                               |                                                                                                                                                                                                                                                      |  |  |
|                                         | Frequency range       | [IEEE802.11a, HiSWANa, HiperLAN2]  100 MHz to 6 GHz, 100 MHz to 3 GHz (Pre-amp On)  [IEEE802.11g (ERP-OFDM, DSSS-OFDM)]  100 MHz to 3 GHz                                                                                                                                                                                                              |                                                                                                                                                                                                                                                      |  |  |
| Spectrum<br>mask                        | Reference level range | High Input: +4 to +38 dBm, -16 to +38 dBm (Pre-amp On)  Low Input: -16 to +18 dBm, -36 to +18 dBm (Pre-amp On)                                                                                                                                                                                                                                         | - 16 to +18 dBm,<br>0 to +26 dBm (With Opt. 32),<br>- 36 to +18 dBm (Pre-amp On)                                                                                                                                                                     |  |  |
|                                         | Template              | Corresponds to the spectrum mask defined is std 802.11g-2003 19.5.4/19.7.2. Arbitrary spe                                                                                                                                                                                                                                                              | in IEEE std 802.11a-1999 17.3.9.2 and IEEE ectrum mask is also available.                                                                                                                                                                            |  |  |
|                                         | Storage mode          | Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as Normal mode.                                                                                                                               |                                                                                                                                                                                                                                                      |  |  |

## ■ IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM), HiSWANa<sup>(\*1)</sup>, HiperLAN2<sup>(\*2)</sup> 5/6

| M                                    | lodel                 | MX860830A                                                                                                                                                                                                                                                                                                                                                                                                                                            | MX860930A                                                                                                                                                                      |  |
|--------------------------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                      | Frequency range       | 9 kHz to 7.8 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9 kHz to 13.2 GHz                                                                                                                                                              |  |
|                                      | Reference level       | High Input: +14 to +38 dBm,                                                                                                                                                                                                                                                                                                                                                                                                                          | −6 to +18 dBm,                                                                                                                                                                 |  |
|                                      | range                 | Low Input: -6 to +18 dBm                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 to +26 dBm (With Opt. 32)                                                                                                                                                    |  |
|                                      |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r sweeping the designated frequency range<br>d displays the ratio to the transmitted power<br>tive peak.                                                                       |  |
| Spurious                             | Measurement method    | the spectrum analyzer. Calculates and d<br>value (power ratio). Detection mode is Sam                                                                                                                                                                                                                                                                                                                                                                | g the designated frequency in time domein of isplays the ratio to the transmitted power ple.                                                                                   |  |
|                                      |                       | the designated frequency range with the                                                                                                                                                                                                                                                                                                                                                                                                              | and displays the average value after sweeping spectrum analyzer and detecting the peak to the transmitted power value (power ratio).                                           |  |
|                                      | Storage mode          | Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as Normal mode.                                                                                                                                                                                                                             |                                                                                                                                                                                |  |
|                                      | Frequency range       | 100 MHz to 6 GHz, 100 MHz to 3 GHz (Pre-a                                                                                                                                                                                                                                                                                                                                                                                                            | amp On)                                                                                                                                                                        |  |
|                                      | Reference level range | High Input:  -6 to +38 dBm,  -26 to +38 dBm (Pre-amp On)  Low Input:  -26 to +18 dBm,  -46 to +18 dBm (Pre-amp On)                                                                                                                                                                                                                                                                                                                                   | -26 to +18 dBm,<br>-18 to +26 dBm (With Opt. 32),<br>-46 to +18 dBm (Pre-amp On)                                                                                               |  |
|                                      | Measurement method    | CCDF: Displays cumulative distribution of difference between instantaneous power and average power.  APD: Displays distribution of difference between instantaneous power and average power.                                                                                                                                                                                                                                                         |                                                                                                                                                                                |  |
| CCDF                                 | Data count            | 10,000 to 2,000,000,000                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                |  |
| ССЫ                                  | Analysis time         | 0.001 to 100 ms                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                |  |
|                                      | Filter Selection      | 22 MHz, 20 MHz, 10 MHz, 5 MHz, 3 MHz, R                                                                                                                                                                                                                                                                                                                                                                                                              | RC: α= 0.22, RC: α= 0.22                                                                                                                                                       |  |
|                                      | Trigger               | Free run: Regardless of the state of an input signal, a signal is taken in continuously.  Wide IF: A signals is taken in synchronizing with a video signal.  Trigger edge: Rise, Fall  Trigger delay: -10000 to +10000 us  Trigger level: High, Middle, Low  External: A signals is taken in synchronizing with the trigger signal inputted into "Trig/Gate In" connector on the back.  Trigger edge: Rise, Fall  Trigger delay: -10000 to +10000 us |                                                                                                                                                                                |  |
| Batch<br>measurement <sup>(*4)</sup> | Measurement items     | flatness (at burst signal), TX-power, Carrier<br>burst signal), Occupied frequency bandwidth<br>mask, Spurious (Two tables can be chosen)                                                                                                                                                                                                                                                                                                            | x, Phase error-RMS, Carrier leak, Spectrum r off power (at burst signal), On/Off ratio (at a, Adjacent channel leakage power, Spectrum be measued complying with "IEEE802.11a, |  |
|                                      | Judgement             | According to the judgement value set per measurement item, PASS or FAIL judgement is automatically performed for each measurement item.                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                |  |

## ■ IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM), HiSWANa<sup>(\*1)</sup>, HiperLAN2<sup>(\*2)</sup> 6/6

| Model                                     |                         | MX860830A                                                                                                                                                           | MX860930A                    |  |
|-------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--|
| Symbol rate<br>erroer<br>measure-men<br>t | Target System           | IEEE802.11a, IEEE802.11g(ERP-OFDM, DSSS-OFDM)                                                                                                                       |                              |  |
|                                           | Frequency range         | 100 MHz to 6 GHz                                                                                                                                                    |                              |  |
|                                           | Measurement level range | High Input: −6 to +38 dBm,                                                                                                                                          | -26 to +18 dBm,              |  |
|                                           |                         | Low Input: -26 to +18 dBm                                                                                                                                           | -26 to +26 dBm (With Opt.32) |  |
|                                           | Analysis length         | $250\ \mathrm{to}\ 1000\ \mathrm{OFDM}$ symbol (Setting resolution : 1 OFDM symbol)                                                                                 |                              |  |
|                                           | Measurement range       | 0.0 to 50.0 ppm                                                                                                                                                     |                              |  |
|                                           | Measurement resolution  | 0.1 ppm                                                                                                                                                             |                              |  |
|                                           | Measurement accuracy    | [IEEE802.11a] Frequency: 4.9 to 6 GHz                                                                                                                               |                              |  |
|                                           |                         | [IEEE802.11g(ERP-OFDM, DSSS-OFDM)]<br>Frequency: 2.4 to 2.5 GHz                                                                                                     |                              |  |
|                                           |                         | (MS8608A: Low Input)                                                                                                                                                |                              |  |
|                                           |                         | $\pm$ (reference frequency accuracy× $10^6$ + $1.0$ ) ppm                                                                                                           |                              |  |
|                                           |                         | per OFDM symbol rate(250 kHz[ = $(4 \text{ us})^{-1}$ ]).                                                                                                           |                              |  |
|                                           | Storage mode            | Normal: Refresh waveform/data for each measurement.                                                                                                                 |                              |  |
|                                           |                         | Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as Normal mode. |                              |  |

### ■ IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) 1/4

- ${\bf *1:}\ When \ burst \ interval \ is \ 20 \ us \ or \ less, \ the \ Wireless \ LAN \ software \ cannot \ measure \ the \ following \ item \ rightly:$ 
  - 1) Carrier off power, 2) On/Off ratio and 3) Burst rising/falling time.

| Model                  |                                    | MX860830A                                                                                                                                                                                                                                                                                                                                | MX860930A                                                                        |  |
|------------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| Modulation type        |                                    | CCK, DQPSK, DBPSK                                                                                                                                                                                                                                                                                                                        |                                                                                  |  |
| Data rate              |                                    | 11, 5.5, 2, 1 Mbps, Auto (at burst signal only)                                                                                                                                                                                                                                                                                          |                                                                                  |  |
| Filter                 |                                    | No Filter Gaussian BT= $0.3$ to $1.0$ (setting resolution: $0.1$ ) Rectangular Root Raised Cosine $\alpha = 0.30$ to $1.00$ (setting resolution: $0.01$ )                                                                                                                                                                                |                                                                                  |  |
| Modulation<br>analysis | Measurement items                  | Frequency (Carrier frequency, Carrier frequency error), Modulation Characteristic (EVM-RMS, EVM-Peak, Phase error-RMS, Amplitude error-RMS, Origin offset)                                                                                                                                                                               |                                                                                  |  |
|                        | Frequency range                    | 100 MHz to 3 GHz                                                                                                                                                                                                                                                                                                                         |                                                                                  |  |
|                        | Measurement frequency intake range | Temperature: +18 to +35°C, setting frequency $\pm 80~\mathrm{kHz}$                                                                                                                                                                                                                                                                       |                                                                                  |  |
|                        | Measurement level range            | High Input:  -6 to +38 dBm,  -26 to +38 dBm (Pre-amp On)  Low Input:  -26 to +18 dBm,  -46 to +18 dBm (Pre-amp On)                                                                                                                                                                                                                       | -26 to +18 dBm,<br>-26 to +26 dBm (With Opt. 32),<br>-46 to +18 dBm (Pre-amp On) |  |
|                        | Carrier frequency accuracy         | Frequency: 2.4 to 2.5 GHz, Input level: -10 dBm (MS8608A: Low Input), Averaging: 30 times, Temperature: +18 to +35°C ± (reference frequency accuracy × setting frequency +200 Hz)                                                                                                                                                        |                                                                                  |  |
|                        | Modulation accuracy                | Frequency: 2.4 to 2.5 GHz, Input level: -10 dBm (MS8608A: Low Input),<br>Averaging: 30 times, Temperature: +18 to +35°C<br>2.3%rms (typ.)                                                                                                                                                                                                |                                                                                  |  |
|                        | Display waveform                   | Constellation, EVM vs chip number, Phase error vs chip number, Eye-diagram                                                                                                                                                                                                                                                               |                                                                                  |  |
|                        | Constellation                      | Error scale: 5%, 10%, 20%, 35%, OFF  (It is available when "Data rate" is not set to "Auto")                                                                                                                                                                                                                                             |                                                                                  |  |
|                        | EVM vs chip                        | Vertical line (full scale): 5%, 10%, 20%, 50%, 100%<br>Horizontal line: Chip number 256 to 4096 chip                                                                                                                                                                                                                                     |                                                                                  |  |
|                        | Phase error vs. Chip               | Vertical line (full scale): 5 deg, 10 deg, 20 deg, 50 deg, 100 deg<br>Horizontal line: Chip number 256 to 4096 chip                                                                                                                                                                                                                      |                                                                                  |  |
|                        | Analysis length                    | Setting range: 256 to 4096 chip Setting resolution: 1 chip Setting method: manual setting, auto setting (at burst signal only. When "Data rate" is set to "Auto".)                                                                                                                                                                       |                                                                                  |  |
|                        | Storage mode                       | Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as "Normal" mode.  Overwrite: Waveform is overwritten without erasing previous waveform. Data display is same as "Normal" mode. |                                                                                  |  |

# ■ IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) 2/4

| Model                        |                                      | MX860830A MX860930A                                                                                                                                                                                                                                                                                                                      |                                                                                                                                      |  |  |
|------------------------------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                              | Frequency range                      | 100 MHz to 3 GHz                                                                                                                                                                                                                                                                                                                         |                                                                                                                                      |  |  |
|                              | Measurement level range              | High Input:  -6 to +38 dBm,  -26 to +38 dBm (Pre-amp On)  Low Input:  -26 to +18 dBm,  -46 to +18 dBm (Pre-amp On)                                                                                                                                                                                                                       | -26 to +18 dBm,<br>-26 to +26 dBm (With Opt.32),<br>-46 to +18 dBm (Pre-amp On)                                                      |  |  |
|                              | Measurement items <sup>(*1)</sup>    |                                                                                                                                                                                                                                                                                                                                          | Power (at burst signal), burst on/off ratio (at rst signal)                                                                          |  |  |
|                              | Burst average power accuracy         | (MS8608A: Low Input) Frequency: 2.4 to 2.5 ≤±1.7 dB (Input level: −18 to 0 dBm), ≤±2.0 dB (Pre-amp On, Input level: −38 to 0                                                                                                                                                                                                             |                                                                                                                                      |  |  |
|                              | Burst rising detection method        | Selects from (1) and (2). (1) The rising edge is detected from change of (2) The rising edge is detected from preamble.                                                                                                                                                                                                                  | of a signal level.                                                                                                                   |  |  |
| RF Power                     | Burst signal length detection method | Selects from (1) and (2).  (1) Input data length  (2) The falling edge is detected from change of a signal level (Ramp-down Detection).                                                                                                                                                                                                  |                                                                                                                                      |  |  |
| THE FOWER                    | Slot display                         | A time domain waveform is displayed.  Vertical line: Unit = dBm, dB, %                                                                                                                                                                                                                                                                   |                                                                                                                                      |  |  |
|                              | Transient display                    | Displays zoom of the rising and falling edges of a slot.  Vertical line: Unit = dBm, dB, %  Horizontal line: 8.0 us to 40.0 us (setting resolution: 0.1 us)                                                                                                                                                                              |                                                                                                                                      |  |  |
|                              | Analysis length                      | Setting range: 256 to 4096 chip Setting resolution: 1 chip Setting method: Manual setting, Auto setting (at burst signal only.)                                                                                                                                                                                                          |                                                                                                                                      |  |  |
|                              | Storage mode                         | Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as "Normal" mode.  Overwrite: Waveform is overwritten without erasing previous waveform. Data display is same as "Normal" mode. |                                                                                                                                      |  |  |
|                              | Frequency range                      | 100 MHz to 3 GHz                                                                                                                                                                                                                                                                                                                         |                                                                                                                                      |  |  |
| Occupied frequency bandwidth | Reference level range                | High Input:  -6 to +38 dBm,  -26 to +38 dBm (Pre-amp On)  Low Input:  -26 to +18 dBm,  -46 to +18 dBm (Pre-amp On)                                                                                                                                                                                                                       | -26 to +18 dBm,<br>-26 to +26 dBm (With Opt. 32),<br>-46 to +18 dBm (Pre-amp On)                                                     |  |  |
|                              | Measurement<br>method                |                                                                                                                                                                                                                                                                                                                                          | is defined as the contained frequency width.  In g 90% of the total radiation power. This  I width" in TELEC's Technical Regulations |  |  |
|                              | Storage mode                         | Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated number measurements. Averaging count: 2 to 999. Waveform display is same "Normal" mode.                                                                                                                     |                                                                                                                                      |  |  |

# ■ IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) 3/4

|                  | Model                 | MX860830A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MX860930A                                                                                  |  |  |
|------------------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--|--|
|                  | Frequency range       | 100 MHz to 3 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                            |  |  |
| Spectrum<br>mask | Reference level range | High Input:  +4 to +38 dBm,  -16 to +38 dBm (Pre-amp On)  Low Input:  -16 to +18 dBm,  -36 to +18 dBm (Pre-amp On)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | - 16 to +18 dBm,<br>0 to +26 dBm (With Opt. 32),<br>- 36 to +18 dBm (Pre-amp On)           |  |  |
| maok             | Template              | Corresponds to the spectrum mask defined is std 802.11g-2003 19.5.4/19.7.2. Arbitrary spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in IEEE std 802.11b-1999 18.4.7.3 and IEEE ectrum mask is also available.                  |  |  |
|                  | Storage mode          | Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as "Normal" mode.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                            |  |  |
|                  | Frequency range       | 9 kHz to 7.8 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9 kHz to 13.2 GHz                                                                          |  |  |
|                  | Reference level range | High Input: +14 to +38 dBm,<br>Low Input: -6 to +18 dBm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -6 to +18 dBm,<br>0 to +26 dBm (With Opt. 32)                                              |  |  |
| Spurious         | Measurement method    | Sweep method:  Detects and displays the peak value after sweeping the designated frequency range with the spectrum analyzer. Calculates and displays the ratio to the transmitted power value (power ratio). Detection mode is Positive peak.  Spot method:  Displays the average value after measuring the designated frequency in time domein of the spectrum analyzer. Calculates and displays the ratio to the transmitted power value (power ratio). Detection mode is Sample.  Search method:  Measures the frequency in time domein and displays the average value after sweeping the designated frequency range with the spectrum analyzer and detecting the peak value.  Calculates and displays the ratio to the transmitted power value (power value) |                                                                                            |  |  |
|                  | Storage mode          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | asurement. lue averaged for the designated number of 2 to 999. Waveform display is same as |  |  |

# ■ IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) 4/4

| Model                |                         | MX860830A                                                                                                                                                                                                                                                                                                                                                                                                                                             | MX860930A                                                                       |  |  |
|----------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--|--|
|                      | Frequency range         | 100 MHz to 6 GHz, 100 MHz to 3 GHz (Pre-amp On)                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |  |  |
|                      | Reference level range   | High Input:  -6 to +38 dBm,  -26 to +38 dBm (Pre-amp On)  Low Input:  -26 to +18 dBm,  -46 to +18 dBm (Pre-amp On)                                                                                                                                                                                                                                                                                                                                    | -26 to +18 dBm,<br>-18 to +26 dBm (With Opt.32),<br>-46 to +18 dBm (Pre-amp On) |  |  |
|                      | Measurement method      | CCDF: Displays cumulative distribution of difference between instantaneous power and average power.  APD: Displays distribution of difference between instantaneous power and average power.                                                                                                                                                                                                                                                          |                                                                                 |  |  |
| CCDF                 | Data count              | 10,000 to 2,000,000,000                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |  |  |
| OODI                 | Analysis time           | 0.001 to 100 ms                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                 |  |  |
|                      | Filter Selection        | 22 MHz, 20 MHz, 10 MHz, 5 MHz, 3 MHz, R                                                                                                                                                                                                                                                                                                                                                                                                               | RC: α= 0.22, RC: α= 0.22                                                        |  |  |
|                      | Trigger                 | Free run: Regardless of the state of an input signal, a signal is taken in continuously. Wide IF: A signals is taken in synchronizing with a video signal.  Trigger edge: Rise, Fall  Trigger delay: -10000 to +10000 us  Trigger level: High, Middle, Low  External: A signals is taken in synchronizing with the trigger signal inputted into a "Trig/Gate In" connector on the back.  Trigger edge: Rise, Fall  Trigger delay: -10000 to +10000 us |                                                                                 |  |  |
| Batch measurement    | Measurement items       | Frequency accuracy, EVM·RMS, EVM-Peak, Phase error-RMS, Amplitude error-RMS, Origin offset, TX-power, Carrier off power (at burst signal), On/Off ratio (at burst signal), Burst signal rising/falling time (at burst signal), Occupied frequency bandwidth, Spectrum mask, Spurious (Two tables can be chosen)                                                                                                                                       |                                                                                 |  |  |
|                      | Judgement               | According to the judgement value set per measurement item, PASS or FAIL judgement is automatically performed for each measurement item.                                                                                                                                                                                                                                                                                                               |                                                                                 |  |  |
|                      | Frequency range         | 100 MHz to 3 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |  |  |
|                      | Measurement level range | High Input: −6 to +38 dBm,<br>Low Input: −26 to +18 dBm                                                                                                                                                                                                                                                                                                                                                                                               | -26 to +18 dBm,<br>-26 to +26 dBm (With Opt.32)                                 |  |  |
|                      | Analysis length         | 11,000 to 44,000 chip (setting resolution: 1 cl                                                                                                                                                                                                                                                                                                                                                                                                       | hip)                                                                            |  |  |
|                      | Measurement range       | 0.0 to ±50.0 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                 |  |  |
| Chip clock           | Measurement resolution  | 0.1 ppm                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |  |  |
| error<br>measurement | Measurement accuracy    | (MS8608A: Low Input) Carrier frequency: 2.4 to 2.5 GHz, ±(reference frequency accracy × 10 <sup>6</sup> + 1.0) pp per chip rate(11 MHz).                                                                                                                                                                                                                                                                                                              |                                                                                 |  |  |
|                      | Storage mode            | Normal: Refresh waveform/data for each measurement.  Average: Displays the measured result value averaged for the designated number of measurements. Averaging count: 2 to 999. Waveform display is same as "Normal" mode.                                                                                                                                                                                                                            |                                                                                 |  |  |

### **■** Electric performance (IQ input)

| Model                            | MS8608A                                                                                                                                                     | MS8609A                                                |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|
| Input impedance                  | 1 MΩ (parallel capacitance <100 pF), $50Ω$                                                                                                                  |                                                        |  |
| Balance input                    | Differential voltage: 0.1 to 1 Vpp (input term In-phase voltage: ±2.5 V (input terminals)                                                                   | inals)                                                 |  |
| Unbalance input                  | 0.1 to 1 Vpp (input terminals) DC/AC coupling Changeable                                                                                                    |                                                        |  |
|                                  | [IEEE802.11a, IEEE802.11g (ERP-OFDM, DSSS-OFDM)]  Modulation accuracy/frequency, RF power, CCDF, Batch measurement, IQ level, Symbol rate error measurement |                                                        |  |
| Measurement items                | [HiSWANa, HiperLAN2]<br>Modulation accuracy/frequency, RF power, O                                                                                          | CCDF, Batch measurement, IQ level                      |  |
|                                  | [IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)]  Modulation accuracy/frequency, RF power, CCDF, Batch measurement, IQ level, Chip clock error measurement.        |                                                        |  |
| I/Q level measurement            | Measures input level of I and Q (rms, p-p)                                                                                                                  |                                                        |  |
| I/Q phase difference measurement | When the CW signal is inputted to I and Q phase difference between I-phase and Q-pha                                                                        | input terminals, measures and displays the se signals. |  |

# Section 2 Panel Layout and Operation Overview

This section provides the explanations of the front and rear panels, basic operation procedures, instructions on installing the measurement software and changing the measurement system, and setting the screen display colors.

| 2.1 | Table    | of Front and Rear Panel Features | 2-2  |
|-----|----------|----------------------------------|------|
| 2.2 | Basic    | Operation                        | 2-10 |
|     | 2.2.1    | Turn the power on                | 2-10 |
|     | 2.2.2    | Selecting item                   | 2-10 |
|     | 2.2.3    | Setting parameter on parameter   |      |
|     |          | setting window                   | 2-11 |
| 2.3 | Installi | ng Measurement Software          | 2-12 |
| 2.4 | Chang    | ing Measurement System           | 2-14 |
| 2.5 | Settino  | Screen Colors                    | 2-16 |

# 2.1 Table of Front and Rear Panel Features

| No. | Panel Marking                |                                                                 | Explanation of Function                                                                                                                                                                                                                                                 |
|-----|------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | (LCD)                        | displays the tr                                                 | Type color TFT liquid crystal display (LCD). It ace waveforms, the parameter settings, the values the soft menu keys, etc.                                                                                                                                              |
| 2   | Spectrum                     | This sets the mode.                                             | MS268*A/MS860*A to the Spectrum Analyzer                                                                                                                                                                                                                                |
| 3   | Signal Analysis<br>Tx Tester |                                                                 | MS268*A/MS860*A to the Signal Analysis mode in surement software operates.                                                                                                                                                                                              |
| 4   | Config                       | This displays t                                                 | he setup menu for GPIB interface or printer, etc.                                                                                                                                                                                                                       |
| 5   | F1 - F6                      | These are the sthe panel key of [More]                          | soft keys for selecting the soft-key menus linked to operation.  This displays the next page of soft-key menus.                                                                                                                                                         |
| 6   | Freq/Ampl                    |                                                                 | guency and level parameter data input section.  Sets frequency.  Sets frequency span.  Sets reference level.  Sets peak level signal frequency on screen to center frequency.  Sets peak level on screen to reference level.                                            |
| 7   | Marker                       | This section is [Marker] [Multi Mkr]  [Peak Search] [Marker ->] | related to operation of marker functions.  Sets marker.  Sets multimarkers.  Press this key after pressing the [Shift] key.  Moves marker to currently-displayed peak level.  Sets parameter according to marker value.  Press this key after pressing the [Shift] key. |
| 8   | System                       | This switches t                                                 | the measurement system in Signal Analysis mode.                                                                                                                                                                                                                         |
| 9   | Single                       | This sets the standard [Single] [Continuous]                    | weep mode.  Executes single sweep.  Executes continuous sweeping.  Press this key after pressing the [Shift] key.  The initial default is continuous sweeping.                                                                                                          |
| 10  | Recall                       | This executes in [Recall] [Save]                                | Reads measurement parameters and waveform data from internal memory or memory card.  Saves measurement parameters and waveform data to internal memory or memory card.                                                                                                  |

| No. | Panel Marking    |                                                  | Explanation of Function                                                                                                                           |
|-----|------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 11  | Measure          | ments including                                  | for performing the various application measure-<br>ng frequency measurement, noise measurement,<br>nel leakage power measurement, etc.            |
| 12  | Display          |                                                  | for selecting the trace waveform. Normally, in the ain, up to two trace waveforms can be displayed.                                               |
|     |                  | The zero-span<br>the [Time] key                  | (Time Domain) mode is selected simply by pressing .                                                                                               |
|     |                  | [A, B]<br>main.                                  | Displays trace A or B waveform in frequency do-                                                                                                   |
|     |                  | [A/B, A/BG]                                      | Displays trace A and B waveforms simultaneously, or displays trace A and BG (background frequency spectrum including trace A) simultaneously.     |
|     |                  | [Time]                                           | Switches to zero span (Time domain) mode to display time domain waveforms.                                                                        |
|     |                  | [A/Time]                                         | Displays trace A and the time domain waveform simultaneously.                                                                                     |
| 13  | Trig/Gate        | This sets the tr<br>[Trig/Gate]                  | rigger/gate functions.  Sets the sweep-start trigger and gate (to control waveform-data write timing) functions.                                  |
| 14  | Coupled Function | This sets the R<br>[BW]<br>[SWP Time]<br>[Atten] | RBW, VBW, sweep time and input attenuator.  Sets RBW and VBW.  Sets sweep time.  Sets input attenuater                                            |
| 15  | Entry            | These keys set [Rotary knob] [ ∨, ∧ ] [Shift]    | Increments and decrements input data.  To execute panel functions indicated by blue letters, press this key and then press the blue-lettered key. |
|     |                  | [0-9, . , +/_]<br>[GHz, MHz, kH                  | Backspace key for correcting input mistakes.  Numeric-data setting keys.  Hz, Hz]                                                                 |
|     |                  | [set]<br>[Cancel]                                | Units keys for frequency, level, time, etc.  Key for setting parameters.                                                                          |
| 16  | Preset           |                                                  | This cancels the entry that be able to set with key.                                                                                              |
| 17  | Local            |                                                  | neasurement parameters to the default values.  he remote status to the local status.                                                              |
| 18  | Disp On/Off      | _                                                | iquid crystal display On/Off.                                                                                                                     |
| 19  | Copy             |                                                  | a hard copy of the screen to a printer or memory                                                                                                  |

| No. | Panel Marking                | Explanation of Function                                                                                                                                                                                                                                                                                                                               |
|-----|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 20  | Stby/On                      | This is the power switch. It can be used when the back-panel power switch is on. The power-on condition is fetched from the Stby condition when the key is pressed for about 1 second. The equipment is returned to the Stby condition from the power-on condition when the key is pressed again for about 1 seconds.                                 |
| 21  | RF Input<br>High Power Input | This is the RF input connector. For MS8608A, This is the High Power input connector.                                                                                                                                                                                                                                                                  |
| 22  | I/Q Input                    | This is the I/Q Input connector. (Input I and Q for Unbalance, and I/ $\overline{I}$ and Q/ $\overline{Q}$ for Balance.) These connectors are mounted when MS2681A/MS2683A-17 or 18, or MS2687A/MS2687B-18 option is installed.                                                                                                                       |
| 23  | Probe Power                  | This is the connector that supplies $\pm 12$ V for a FET probe.                                                                                                                                                                                                                                                                                       |
|     |                              | Pin allocation is shown below.                                                                                                                                                                                                                                                                                                                        |
|     |                              | GND No-connection  -12 V +12 V                                                                                                                                                                                                                                                                                                                        |
| 24  | Memory Card                  | This is the slot to set memory cards which save/load the wave-<br>form data and measurement parameters etc.                                                                                                                                                                                                                                           |
| 25  | Hi power                     | This is the setting key of on input connector. It is the function of only MS8608A.  [Hi Power] The High power input connector is used.  [Low Power] The Low power input connector is used.                                                                                                                                                            |
| 26  | Low Power Input              | This is the Low power input connector. For MS8608A.                                                                                                                                                                                                                                                                                                   |
| 50  | (Fan)                        | This is the cooling fan for ventilating internally-generated heat.  Leave a clearance of at least 10 cm around the fan.                                                                                                                                                                                                                               |
| 51  | 10 MHz STD                   | They are the input connector for an external reference crystal oscillator and the output connector of the 10 MHz Reference signal. When an external reference signal is input, the equipment switches automatically from the internal signal to the external signal. If an external signal is input, the heater of the internal OCXO is switched off. |
| 52  | IF Output                    | This is the IF output connector. This signal is bandwidth controlled by the RBW setting.                                                                                                                                                                                                                                                              |
| 53  | Wideband                     | This is the wideband IF output connector. This signal is not                                                                                                                                                                                                                                                                                          |
|     | IF OUTPUT                    | bandwidth controlled by the RBW setting.                                                                                                                                                                                                                                                                                                              |

| No. | Panel Marking        | Explanation of Function                                                                                                                         |
|-----|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 54  | Sweep (X)            | This is a output connector for sweep signal (X).                                                                                                |
| 55  | Video (Y)            | This connector output a Y-axis signal that is proportional to the video detection signal output and is logarithmically compressed at log scale. |
| 56  | SWP Status (Z)       | This is a output connector for sweep status signal (Z).                                                                                         |
| 57  | Trig/Gate In (±10 V) | This is an input connector for external trigger/gate signal.                                                                                    |
| 58  | Off/On               | This is the AC line power switch.                                                                                                               |
| 59  | (Inlet)              | This is the fused AC power inlet to which the supplied power cord is connected. It contains a time-lag fuse.                                    |
| 60  | (Ground Terminal)    | Connect this frame ground terminal to ground to prevent risk of an accidental electric shock.                                                   |
| 61  | Parallel             | This is the Parallel connector. Connect it to a printer.                                                                                        |
| 62  | VGA Out              | This is the VGA signal output connector.                                                                                                        |
| 63  | GPIB                 | This connector is for use with a GPIB interface. It is connected to an external system controller.                                              |
| 64  | RS-232C              | This is the RS-232C connector. Connect it to an external system controller.                                                                     |
| 65  | Ethernet             | This is the 10 Base-T connector for Ethernet. Connect this to the external system controller.                                                   |
| 66  | Name plate           | This shows a production number and options.                                                                                                     |

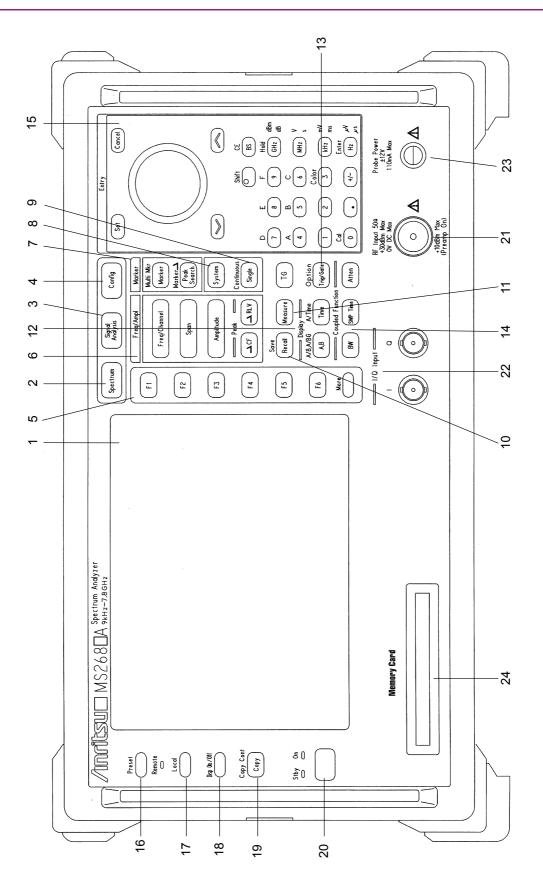



Fig. 2-1 Front Panel of MS2681A/MS2683A/MS2687A/ MS2687B

2-6

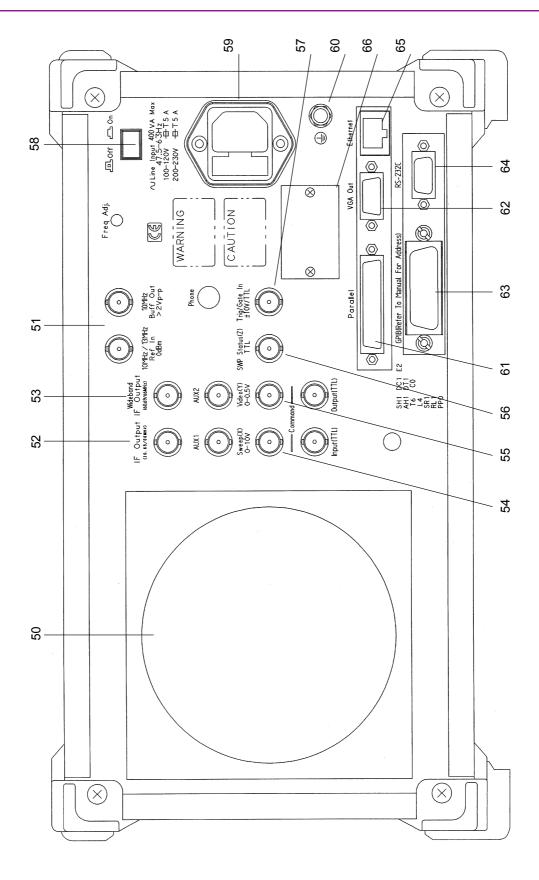
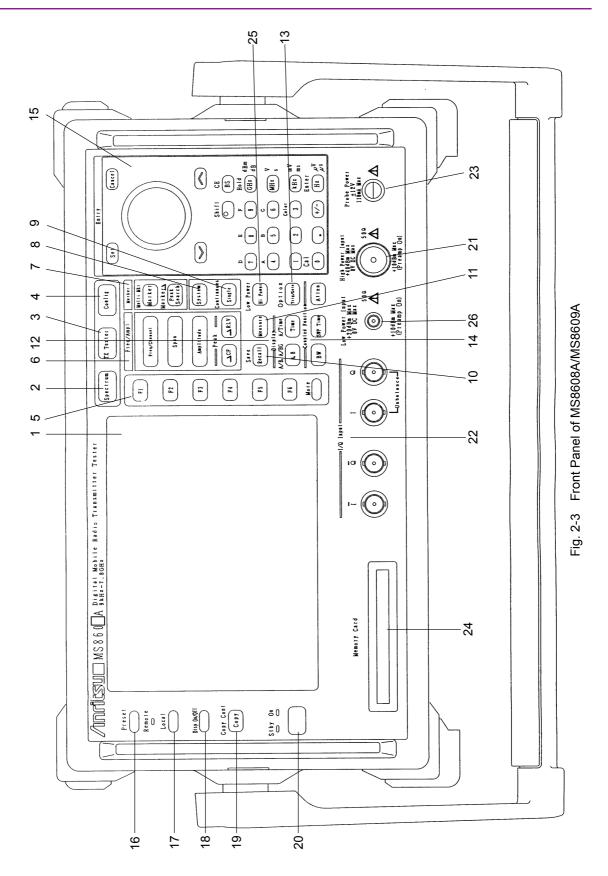




Fig. 2-2 Rear Panel of MS2681A/MS2683A/MS2687A/MS2687B



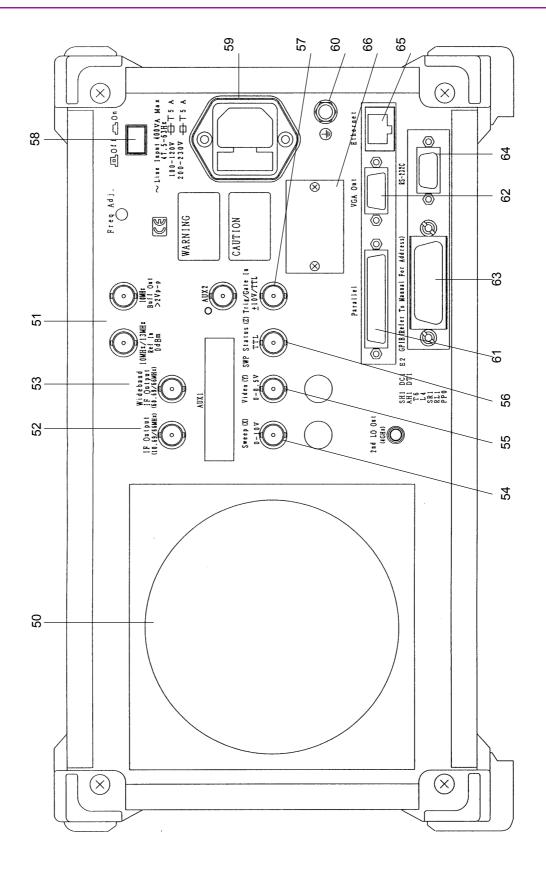



Fig. 2-4 Rear Panel of MS8608A/MS8609A

# 2.2 Basic Operation

This section describes the basic operation and typical parameter setting method.

### 2.2.1 Turn the power on

Press the standby button on the rear panel, then press the power switch on the front panel. In this case, continue pressing the power switch on the front panel for one second or more.

#### Note:

The power is turned on/off only when the power switch on the front panel is pressed for one second or more. This prevents the power from being turned on/off easily by mistake.

To make full use of this equipment, turn the Line Input power switch to On (this turns on the Stby (power) lamp on the front panel) at least 30 minutes before use. The internal reference frequency oscillator is pre-heated and results in stable operation.

### 2.2.2 Selecting item

The item with a cursor on the screen indicates that the parameter can be changed, as below.

Some parameters can be set after pressing the corresponding function key, as below.

#### Setting item with cursor

Move the cursor at the item to be selected using \( \) and \( \) (Entry keys) and the rotary knob.

Then, press Set (Entry key) to confirm the item, and the parameter setting window is open.

#### Setting item with function key

Press the function key (any of  $\boxed{F1}$  to  $\boxed{F6}$  key) to open the parameter setting window.

Some parameters are set or screen shifted only by pressing a function kev.

Those differences can be distinguished with the sign currently displayed on the upper right of a function key.

The meaning of the sign at the upper right of function key

- $\rightarrow$ : Shifts to another screen.
- #:Open parameter setting window.
- \$:Some values are changed in order.

None: When pressed, it immediately is executed, change of  $\ensuremath{\mathsf{ON}}\xspace\ensuremath{\mathsf{OFF}}$ 

of Marker etc.

### 2.2.3 Setting parameter on parameter setting window

Setting parameter on the parameter setting window has two types of procedures.

- (1) Select one of the parameters shown in the window.
- (2) Input a value.

Selecting one of the parameters shown in the window

Move the cursor at the parameter to be selected using \( \sum \) and \( \sum \) (Entry keys) or the rotary knob.

Then, press Set (Entry key) to confirm the parameter.

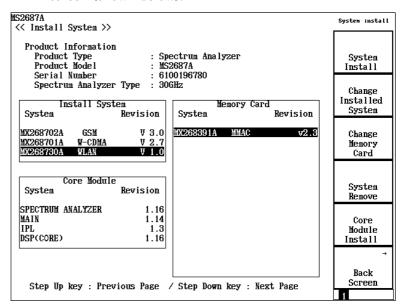
The window closes.

#### Inputting value

Input a value using the ten-key pad or the rotary knob.

Then, press a unit key or [Set] (Entry key) to confirm the parameter.

The window closes.


# 2.3 Installing Measurement Software

Install the desired measurement software (sold separately) of the MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A in the Signal Analysis mode, as follows:

To install a new measurement software on the MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A, an installation key for the system must be registered. Refer to the separate "MS268\*A Spectrum Analyzer operation manual Vol.1 Main Unit" or "MS860\*A Digital Mobile Radio Transmitter Tester operation manual vol.1 Main Unit" about the method of registering an installation key.

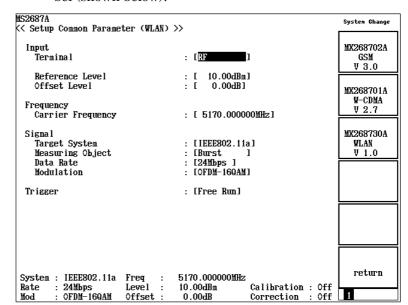
#### Step Procedure

- Insert a memory card on which the measurement software is saved into the memory card slot on the panel.
- 2 Press Config to display the Config screen.
- 3 Press F4 (System Install) to display the Install System screen (shown below).



- 4 Press [F2] (Change Installed System) to make the Install System box active.
- 5 Select the install destination for the new measurement system using the rotary knob.
- 6 Press [F3] (Change Memory Card) to make the Memory Card box active.
- 7 Select the new measurement system using the rotary knob.
- 8 Press F1 (System Install) to install the new system.

| Step | Procedure                                                                      |
|------|--------------------------------------------------------------------------------|
| 9    | The confirmation window opens. Move the cursor to "Yes" using the rotary knob. |
| 10   | Press Set (Entry key) to start installation.                                   |
| 11   | After installation is completed, the new measurement system screen appears.    |


# 2.4 Changing Measurement System

To use the MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A with multiple measurement software (sold separately) installed, in the Signal Analysis mode; change the measurement system to the desired system, as follows:

When measurement software registered is only one, changing measurement system cannot do.

# Step Procedure 1 Press Signal Analysis to display the measurement system screen.

Press System to display the System Change function label (shown below).



- 3 All the installed measurement systems are displayed at function labels.
- 4 Press the function key for the measurement system to be
- 5 The measurement system is changed over.
- 6 After the setting is completed, a new system screen appears.

A measurement system not displayed in the function labels cannot be set. Refer to Section 2.3 "Installing Measurement Software" to install a new measurement system.

# 2.5 Setting Screen Colors

The method for setting the screen display colors are explained here. The screen colors are selectable from four preset color patterns and one user-defined color pattern.

- Pressing Shift + 3 (Color) displays the function labels shown below. Select one to be used:
  - F1 (Color Pattern 1): Sets the Color Pattern 1 (default at shipment)
  - F2 (Color Pattern 2): Sets the Color Pattern 2
    F3 (Color Pattern 3): Sets the Color Pattern 3
    F4 (Color Pattern 4): Sets the Color Pattern 4
  - F5 (Define User Color): Sets the user-defined color pattern

#### Setting the user-defined color pattern

- Pressing [F5] (Define User Color) changes the display color pattern to the userdefined one and displays the function labels shown below:
  - [F1] (Copy Color Ptn from):

Displays the function labels to select from Color Pattern 1 to 4 as the base color for setting the user-defined color pattern.

• F2 (Select Item): Selects item for which the display color is

to be set.

• F3 (Red): Sets the intensity of red for the item se-

lected by Select Item.

• F4 (Green): Sets the intensity of green for the item

selected by Select Item.

• F5 (Blue): Sets the intensity of blue for the item se-

lected by Select Item.

# Section 3 Measurement

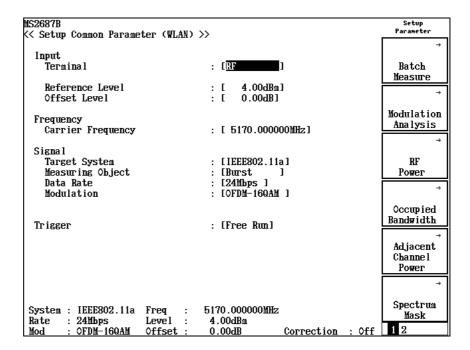
This section provides an explanation of the parameters to be set on each screen, and instructions on setting them.

| 3.1 | Setting | Measurement Parameters                         | 3-6  |
|-----|---------|------------------------------------------------|------|
|     | 3.1.1   | Setting signal input connector (Terminal)      | 3-7  |
|     | 3.1.2   | Setting RF input level (Reference Level)       | 3-8  |
|     | 3.1.3   | Setting level correction factor (Offset Level) | 3-9  |
|     | 3.1.4   | Setting frequency (Carrier Frequency)          | 3-10 |
|     | 3.1.5   | Setting system to be measured                  |      |
|     |         | (Target System)                                | 3-11 |
|     | 3.1.6   | Setting signal to be measured                  |      |
|     |         | (Measuring Object)                             | 3-12 |
|     | 3.1.7   | Setting signal transmission rate               |      |
|     |         | (Data Rate)                                    | 3-13 |
|     | 3.1.8   | Setting signal modulation method               |      |
|     |         | (Modulation)                                   | 3-16 |
|     | 3.1.9   | Setting filter (Filter)                        | 3-17 |
|     | 3.1.10  | Setting BT product (BT)                        | 3-18 |
|     | 3.1.11  | Setting roll off factor ( $\alpha$ )           | 3-18 |
|     | 3.1.12  | Setting trigger (Trigger)                      | 3-19 |
|     | 3.1.13  | Setting table for frequency characteristic     |      |
|     |         | correction factors (Correction)                | 3-21 |
|     | 3.1.14  | Setting pre-amplifier (Pre Ampl.)              | 3-22 |
| 3.2 | Analyzi | ng Modulation Accuracy                         | 3-23 |
|     | 3.2.1   | Explanation of measured results                | 3-23 |
|     | 3.2.2   | Changing waveform display format               |      |
|     |         | (Trace Format)                                 | 3-27 |
|     | 3.2.3   | Changing input signal settings                 |      |
|     |         | (Signal Setup)                                 | 3-28 |
|     | 3.2.4   | Changing signal transmission rate              |      |
|     |         | (Data Rate)                                    | 3-29 |
|     | 3.2.5   | Changing signal modulation method              |      |
|     |         | (Modulation)                                   | 3-29 |
|     | 3.2.6   | Setting analysis length (Analysis Length)      | 3-30 |
|     | 3.2.7   | Setting analysis start (Analysis Start)        | 3-31 |
|     | 3.2.8   | Changing threshold of modulation accuracy      |      |
|     |         | (EVM Threshold)                                | 3-31 |
|     | 3.2.9   | Setting threshold of modulation accuracy       |      |
|     |         | (Threshold Level)                              | 3-32 |
|     | 3.2.10  | Selecting waveform display format              |      |
|     |         | (View Selection)                               | 3-33 |
|     | 3.2.11  | Changing error circle scale (Error Scale)      | 3-34 |
|     |         |                                                |      |

|     | 3.2.12 | Changing vertical scale for waveform display  |      |
|-----|--------|-----------------------------------------------|------|
|     |        | (Vertical Scale)3                             | 3-35 |
|     | 3.2.13 | Displaying marker 3                           | 3-36 |
|     | 3.2.14 | Averaging (Storage Mode) 3                    | 3-38 |
|     | 3.2.15 | Optimizing measurement range                  |      |
|     |        | (Adjust Range) 3                              | 3-39 |
|     | 3.2.16 | Calibration function (Calibration) 3          | 3-39 |
| 3.3 | Measur | ring Transmit Power3                          | 3-42 |
|     | 3.3.1  | Explanation of measured results 3             | 3-42 |
|     | 3.3.2  | Changing waveform display format              |      |
|     |        | (Trace Format) 3                              | 3-44 |
|     | 3.3.3  | Changing analysis length                      |      |
|     |        | (Analysis Length) 3                           | 3-45 |
|     | 3.3.4  | Automatic detection of signal length          |      |
|     |        | (Ramp-down Detection) 3                       | 3-45 |
|     | 3.3.5  | Changing signal detection method              |      |
|     |        | (Preamble Search)                             | 3-46 |
|     | 3.3.6  | Changing analysis length detection level      |      |
|     |        | (Detection Level)                             | 3-46 |
|     | 3.3.7  | Changing analysis length detection point      |      |
|     |        | offset (Detection Offset)                     | 3-47 |
|     | 3.3.8  | Changing display unit (Unit)                  |      |
|     | 3.3.9  | Changing reference value for waveform         |      |
|     |        | display (Display Reference Level) 3           | 3-48 |
|     | 3.3.10 | Changing display range for rising/falling     |      |
|     |        | waveforms (Transient Time Scale)              | 3-48 |
|     | 3.3.11 | Change the Reference Value of Transmitted     |      |
|     |        | Electric Power of Rising and Falling Waveforn | n    |
|     |        | (Transient Ref.Power)                         |      |
|     | 3.3.12 | Smoothing waveform (Smoothing Filter) 3       | 3-49 |
|     | 3.3.13 | Averaging (Storage Mode) 3                    | 3-49 |
|     | 3.3.14 | Optimizing measurement range                  |      |
|     |        | (Adjust Range) 3                              | 3-50 |
|     | 3.3.15 | Calibration function (Calibration)            |      |
| 3.4 |        | ring Occupied Frequency Bandwidth 3           |      |
|     | 3.4.1  | Explanation of measured results               |      |
|     | 3.4.2  | Selecting measurement standard 3              |      |
|     | 3.4.3  | Measuring by using any measurement            |      |
|     |        | parameters                                    | 3-55 |
|     | 3.4.4  | Setting storage mode                          |      |
|     | 3.4.5  | Calibration function (Calibration)            |      |
|     | 3.4.6  | Optimizing measurement range                  | . 55 |
|     | 50     | (Adjust Range)                                | 3-58 |
| 3.5 | Measur | ring Adjacent Channel Leakage Power 3         |      |
| ٥.٠ | oaoai  | Loanago i ovioi                               | . 55 |

|     | 3.5.1  | Explanation of measured results         | . 3-59  |
|-----|--------|-----------------------------------------|---------|
|     | 3.5.2  | Selecting measurement standard          | 3-61    |
|     | 3.5.3  | Selecting measurement method            | 3-62    |
|     | 3.5.4  | Changing measured result unit           | 3-63    |
|     | 3.5.5  | Measuring by using any measurement      |         |
|     |        | parameters                              | . 3-64  |
|     | 3.5.6  | Setting storage mode                    | . 3-67  |
|     | 3.5.7  | Calibration function (Calibration)      | . 3-67  |
|     | 3.5.8  | Optimizing measurement range            |         |
|     |        | (Adjust Range)                          | . 3-67  |
| 3.6 | Measur | ing Spectrum Mask                       | . 3-68  |
|     | 3.6.1  | Explanation of measured results         | . 3-68  |
|     | 3.6.2  | Selecting measurement standard          | . 3-70  |
|     | 3.6.3  | Changing standard line of spectrum mask | . 3-72  |
|     | 3.6.4  | Changing measured result unit           | . 3-73  |
|     | 3.6.5  | Measuring by using any measurement      |         |
|     |        | parameters                              | . 3-74  |
|     | 3.6.6  | Setting storage mode                    | . 3-77  |
|     | 3.6.7  | Measuring by using the measurement      |         |
|     |        | parameters confirming to measurement    |         |
|     |        | standard                                | . 3-78  |
|     | 3.6.8  | Calibration function (Calibration)      | . 3-78  |
|     | 3.6.9  | Optimizing measurement range            |         |
|     |        | (Adjust Range)                          | . 3-78  |
| 3.7 | Measur | ring Spurious                           | . 3-79  |
|     | 3.7.1  | Measurement procedures                  | . 3-79  |
|     | 3.7.2  | Measured results                        | . 3-80  |
|     | 3.7.3  | Changing measured results unit          | . 3-85  |
|     | 3.7.4  | Measuring by using any measurement      |         |
|     |        | parameters                              | . 3-86  |
|     | 3.7.5  | Viewing waveform                        | . 3-87  |
|     | 3.7.6  | Defining frequency table                |         |
|     |        | (Spot measurement)                      | . 3-88  |
|     | 3.7.7  | Defining frequency table                |         |
|     |        | (Sweep and Search measurements)         | 3-92    |
|     | 3.7.8  | Measuring using conformance             |         |
|     |        | with official standards                 | . 3-97  |
|     | 3.7.9  | Measuring by using any measurement      |         |
|     |        | parameters (Setup Table)                | . 3-101 |
|     | 3.7.10 | Setting storage mode                    | . 3-103 |
|     | 3.7.11 | Calibration function (Calibration)      | . 3-104 |
|     | 3.7.12 | Optimizing measurement range            |         |
|     |        | (Adjust Range)                          | . 3-104 |
| 3.8 | Measur | ing CCDF                                | . 3-105 |

|      | 3.8.1   | Explanation of measured results             | . 3-105 |
|------|---------|---------------------------------------------|---------|
|      | 3.8.2   | Selecting measurement method                | . 3-107 |
|      | 3.8.3   | Setting display format                      | . 3-108 |
|      | 3.8.4   | Setting for measurement                     | . 3-110 |
|      | 3.8.5   | Optimizing measurement range                |         |
|      |         | (Adjust Range)                              | . 3-110 |
|      | 3.8.6   | Calibration function (Calibration)          | . 3-110 |
| 3.9  | Measur  | ing Symbol Rate Error                       | . 3-111 |
|      | 3.9.1   | Explanation of measured results             | . 3-111 |
|      | 3.9.2   | Changing analysis length                    |         |
|      |         | (Analysis Length)                           | . 3-112 |
|      | 3.9.3   | Averaging (Storage Mode)                    | . 3-112 |
|      | 3.9.4   | Calibration function (Calibration)          | . 3-113 |
|      | 3.9.5   | Optimizing measurement range                |         |
|      |         | (Adjust Range)                              | . 3-113 |
| 3.10 | Measur  | ing Chip Clock Frequency                    | . 3-114 |
|      | 3.10.1  | Explanation of measured results             | . 3-114 |
|      | 3.10.2  | Changing analysis length                    |         |
|      |         | (Analysis Length)                           | . 3-115 |
|      | 3.10.3  | Averaging (Storage Mode)                    | . 3-116 |
|      | 3.10.4  | Calibration function (Calibration)          | . 3-116 |
|      | 3.10.5  | Optimizing measurement range                |         |
|      |         | (Adjust Range)                              | . 3-116 |
| 3.11 | Measur  | ing IQ Level                                | . 3-117 |
|      | 3.11.1  | Explanation of measured results             | . 3-117 |
|      | 3.11.2  | Averaging (Storage Mode)                    | . 3-118 |
|      | 3.11.3  | Changing measured results unit (Unit)       | . 3-119 |
| 3.12 | Power I | Meter                                       | . 3-120 |
|      | 3.12.1  | Explanation of measured results             | . 3-120 |
|      | 3.12.2  | Performing zero-point calibration           |         |
|      |         | (Zero Set)                                  | . 3-121 |
|      | 3.12.3  | Using relative value display (Set Relative) | . 3-121 |
|      | 3.12.4  | Setting measurement range                   |         |
|      |         | (Range Up/Range Down)                       | . 3-121 |
| 3.13 | Measur  | ing in Batch                                | . 3-122 |
|      | 3.13.1  | Screen transition                           | . 3-124 |
|      | 3.13.2  | Setting conditions for measurement          | . 3-125 |
|      | 3.13.3  | Setting modulation analysis                 | . 3-127 |
|      | 3.13.4  | Setting RF power                            | . 3-131 |
|      | 3.13.5  | Setting occupied frequency bandwidth        | . 3-133 |
|      | 3.13.6  | Setting adjacent channel leakage power      | . 3-135 |
|      | 3.13.7  | Setting spectrum mask                       | . 3-137 |
|      | 3.13.8  | Setting the spurious                        | . 3-138 |
|      | 3.13.9  | Starting and stopping measurement           | . 3-140 |


|      | 3.13.10 | ) Measured results                    | 3-142 |
|------|---------|---------------------------------------|-------|
|      | 3.13.11 | Calibration function (Calibration)    | 3-147 |
|      | 3.13.12 | 2 Optimizing measurement range        |       |
|      |         | (Adjust Range)                        | 3-147 |
|      | 3.13.13 | 3 Measurement mode                    | 3-147 |
|      | 3.13.14 | Saving measurement results            | 3-148 |
| 3.14 | Saving  | and Recalling Setting Parameters      | 3-150 |
|      | 3.14.1  | Saving parameters (Save)              | 3-151 |
|      | 3.14.2  | Saving file under different name      |       |
|      |         | (File Name)                           | 3-152 |
|      | 3.14.3  | Write-protecting file (Write Protect) | 3-153 |
|      | 3.14.4  | Recalling parameters (Recall)         | 3-154 |

# 3.1 Setting Measurement Parameters

To set parameters for measurement, such as input connector and frequency; use the Setup Common Parameter screen.

In MX268\*30A,Press Signal Analysis to display the Setup Common Parameter screen. In MX860\*30A,Press Tx Tester to display the Setup Common Parameter screen. Then, press Preset to move to the measurement screen.

The Setup Common Parameter screen is shown below.



### 3.1.1 Setting signal input connector (Terminal)

Select a connector to input signals from the DUT (Device Under Test) to be measured as shown below.

- 1. Press (Entry keys) or turn the rotary knob to move the cursor to "Terminal" item.
- 2. Press Set (Entry key).
- 3. The selection window opens.
- 4. Press (Contry keys) or turn the rotary knob to move the cursor to the terminal type to select.
- 5. Press Set.

When the setting is completed, the selected terminal is displayed in square brackets [] at the right of "Terminal" item.

The following connector (terminal) settings are available.

• RF: Selects the RF input connector.

In MS8608A, High Power input or Low Power input is chosen.

Change of High Power input and Low Power input is performed as follows.

Setting High Power input: Press Hi Power

Setting Low Power input: Press Shift and Press Hi Power

• IQ-DC: Selects the IQ input connector.

One of the IQ input connectors identified as "Unbalance" is used.

In this case, the DC connection is used to connect the internal circuit.

- IQ-AC: Selects the IQ input connector.

  One of the IQ input connectors identified as "Unbalance" is used.

  In this case, the AC connection is used to connect the internal circuit.
- IQ-Balance: Selects the IQ input connector.
   A differential signal is input using I and \(\overline{I}\) or Q and \(\overline{Q}\).

If the IQ input is selected, the "Impedance" item is displayed in the bottom and the input impedance of 50  $\Omega$  or 1 M $\Omega$  can be selected. Select either of them according to the output impedance of the DUT.

The IQ-DC, IQ-AC, and IQ-Balance input are enabled only if main unit options 17 and 18 are installed.

IQ-Balance input cannot be used by MS2687A/MS2687B.

# 3.1.2 Setting RF input level (Reference Level)

Set the input level for the RF signal from the DUT to be measured as shown below.

- 1. Press (Entry keys) or turn the rotary knob to move the cursor to "Reference Level" item.
- 2. Press Set or input a value to set using the numeric keypad.
- 3. The setting window opens.
- 4. Press ( (Entry keys), turn the rotary knob, or use the numeric keypad to input a value to set.
- 5. Press Set.

When the setting is completed, the set level appears in the square brackets [] at the right of the "Reference Level" item.

This item does not appear as long as the IQ input connector is selected. This setting can be changed to an optimal value by using the Adjust Range function on the measurement screen.

# 3.1.3 Setting level correction factor (Offset Level)

Set the user-defined level correction factor as shown below.

- 1. Press (Entry keys) or turn the rotary knob to move the cursor to "Offset Level" item.
- 2. Press Set or input a value you wish to set using the numeric keypad.
- 3. The setting window opens.
- 4. Press (\(\sigma\) (Entry keys) or turn the rotary knob, or use the numeric keypad to input a value you wish to set.
- 5. Press Set.

When setting is completed, the level correction factor is shown in square brackets [] at the right of the "Offset Level" item.

The value obtained from the following formula is displayed as the measured result for the level.

RF level displayed as measured result = Measured value + Offset Level

#### Examples:

- 1. The correction factor is set at  $-20~\mathrm{dB}$  to obtain the measured result at the DUT output connector when a 20-dB amplifier is inserted between the DUT and this Spectrum Analyzer.
- 2. The correction factor is set at +10 dB to obtain the measured result at the DUT output connector when a 10-dB attenuator is inserted between the DUT and this Spectrum Analyzer.

Offset Level is not displayed when the IQ input connector is selected.

# 3.1.4 Setting frequency (Carrier Frequency)

Set the frequency for the signal from the DUT to be measured as shown below.

- 1. Press (Entry keys) or turn the rotary knob to move the cursor to Carrier Frequency.
- 2. Press Set or input a value you wish to set using the numeric keypad.
- 3. The setting window opens.
- 4. Press (Entry keys) or turn the rotary knob, or use the numeric keypad to input a value you wish to set.
- 5. Press Set.

When setting is completed, the set frequency appears in square brackets [] for the Carrier Frequency.

Carrier Frequency is not displayed when the IQ input connector is selected.

# 3.1.5 Setting system to be measured (Target System)

Set the communications standards for the system to be measured.

- 1. Press (Entry keys) or turn the rotary knob to move the cursor to "Target System" item.
- 2. Press Set (Entry key).
- 3. The selection window opens.
- 4. Press (Contry keys) or turn the rotary knob to move the cursor to the item to select.
- 5. Press Set.

When the setting is completed, the set communication standards appear in the square brackets [] at the right of the "Target System" item. The following settings are available.

#### • IEEE802.11a:

IEEE Std 802.11a, a 5 GHz band communications standard formulated by the Institute of Electrical and Electronic Engineers (IEEE)

• HiperLAN2:

ETSI TS 101 475, a 5 GHz band communications standard formulated by the European Telecommunications Standard Institute (ETSI)

• HiSWANa:

ARIB STD-T70, a 5 GHz band communications standard formulated by the Association of Radio Industries and Businesses

• IEEE802.11b:

IEEE Std 802.11b, a  $2.4~\mathrm{GHz}$  band communications standard formulated by the IEEE

- IEEE802.11g (ERP-DSSS/CCK):
  - IEEE Std 802.11g, a 2.4 GHz band communications standard formulated by the IEEE, with the DSSS modulation or CCK modulation method.
- IEEE802.11g (ERP-OFDM):

IEEE Std 802.11g, a 2.4 GHz band communications standard formulated by the IEEE, with the OFDM modulation method.

• IEEE802.11g (DSSS-OFDM):

IEEE Std 802.11g, a 2.4 GHz band communications standard formulated by the IEEE, with the DSSS-OFDM modulation method.

# CAUTION

When Target System is HiperLAN2, note that the following measurements cannot be performed:

- 1. Measurement in MAC frame units
- 2. Measurement of signals for which the modulation mode changes in the middle of measurement, including:
  - a. Burst signals for the which modulation mode changes within a burst
  - b. Continuous signals for which the modulation mode changes in the middle of measurement (except for constant modulation)
- 3. Power time mask measurement

### 3.1.6 Setting signal to be measured (Measuring Object)

Set the type of signal to be measured.

- 1. Press (Contraction (Entry keys) or turn the rotary knob to move the cursor to "Measuring Object" item.
- 2. Press [Set] (Entry key).
- 3. The selection window opens.
- 4. Press (Entry keys) or turn the rotary knob to move the cursor to the item to select.
- 5. Press Set.

When the setting is completed, the set target signal appears in the square brackets [] at the right of the "Measuring Object" item.

The following setting is available.

- Burst: Measures the burst signals conforming to the communications standard.
- BC-Burst: Measures the Broadcast burst signals conforming to the communications standard HiSWANa.
- DL-Burst: Measures the Downlink burst signals conforming to the communications standard HiSWANa.
- UL-Burst: Measures the Uplink burst signals conforming to the communications standard HiSWANa.
- Burst(ALL): Measures the all burst signals conforming to the communications standard HiSWANa.

• Continuous: Measures the continuous signals conforming to the communications standard.

When chosen except the communications standard HiSWANa,it does not display BC\_Burst, DL\_Burst, UL\_Burst, and Burst(All) . When each burst interval is 3.2 or more msec, it may be unable to measure correctly.

### 3.1.7 Setting signal transmission rate (Data Rate)

Set the transmission rate for the signal to be measured.

- 1. Press (Entry keys) or turn the rotary knob to move the cursor to "Data Rate" item.
- 2. Press Set (Entry key).
- 3. The selection window opens.
- 4. Press (Entry keys) or turn the rotary knob to move the cursor to the item to select.
- 5. Press Set.

When the setting is completed, the set transmission rate appears in the square brackets [] at the right of the "Data Rate" item.

According to the set transmission rate, the modulation method is automatically set to conform to the communications standard.

When "Auto" is set for the Data Rate, the transmission rate, modulation method and signal length are automatically recognized within the measuring instrument, and are set to the recognized values. Note that the modulation method and signal length cannot be set when "Auto" is set for the Data Rate.

In a communications standard HiSWANa, when the preamble interval of ACH and Uplink is  $0\,\mu$  sec, it cannot measure.

The transmission rate that can be set and the modulation method that is automatically set according to the rate are shown below:

IEEE802.11a communication standard:

| Transmission rate | Modulation method |
|-------------------|-------------------|
| 6 Mbps            | OFDM-BPSK         |
| 9 Mbps            | OFDM-BPSK         |
| 12 Mbps           | OFDM-QPSK         |
| 18 Mbps           | OFDM-QPSK         |
| 24 Mbps           | OFDM-16QAM        |
| 36 Mbps           | OFDM-16QAM        |
| 48 Mbps           | OFDM-64QAM        |
| 54 Mbps           | OFDM-64QAM        |
| Auto              |                   |

HiperLAN2 communication standard:

| Transmission rate | Modulation method |
|-------------------|-------------------|
| 6 Mbps            | OFDM-BPSK         |
| 9 Mbps            | OFDM-BPSK         |
| 12 Mbps           | OFDM-QPSK         |
| 18 Mbps           | OFDM-QPSK         |
| 27 Mbps           | OFDM-16QAM        |
| 36 Mbps           | OFDM-16QAM        |
| 54 Mbps           | OFDM-64QAM        |

### HiSWANa communication standard:

| Transmission rate | Modulation method |
|-------------------|-------------------|
| 6 Mbps            | OFDM-BPSK         |
| 9 Mbps            | OFDM-BPSK         |
| 12 Mbps           | OFDM-QPSK         |
| 18 Mbps           | OFDM-QPSK         |
| 27 Mbps           | OFDM-16QAM        |
| 36 Mbps           | OFDM-16QAM        |
| 54 Mbps           | OFDM-64QAM        |
| Auto              |                   |

IEEE802.11b communication standard:

| Transmission rate | Modulation method |
|-------------------|-------------------|
| 1 Mbps            | DBPSK             |
| 2 Mbps            | DQPSK             |
| 5.5 Mbps          | CCK-5.5 Mbps      |
| 11 Mbps           | CCK-11 Mbps       |
| Auto              |                   |

IEEE802.11g (ERP-DSSS/CCK) communication standard:

| Transmission rate   | Modulation method |
|---------------------|-------------------|
| 1 Mbps              | DBPSK             |
| 2 Mbps              | DQPSK             |
| $5.5~\mathrm{Mbps}$ | CCK-5.5 Mbps      |
| 11 Mbps             | CCK-11 Mbps       |
| Auto                |                   |

IEEE802.11g (ERP-OFDM) communication standard:

| Transmission rate | Modulation method |
|-------------------|-------------------|
| 6 Mbps            | OFDM-BPSK         |
| 9 Mbps            | OFDM-BPSK         |
| 12 Mbps           | OFDM-QPSK         |
| 18 Mbps           | OFDM-QPSK         |
| 24 Mbps           | OFDM-16QAM        |
| 36 Mbps           | OFDM-16QAM        |
| 48 Mbps           | OFDM-64QAM        |
| 54 Mbps           | OFDM-64QAM        |
| Auto              |                   |

 ${\tt IEEE802.11g\ (DSSS\text{-}OFDM)\ communication\ standard:}$ 

| Transmission rate | Modulation method |
|-------------------|-------------------|
| 6 Mbps            | OFDM-BPSK         |
| 9 Mbps            | OFDM-BPSK         |
| 12 Mbps           | OFDM-QPSK         |
| 18 Mbps           | OFDM-QPSK         |
| 24 Mbps           | OFDM-16QAM        |
| 36 Mbps           | OFDM-16QAM        |
| 48 Mbps           | OFDM-64QAM        |
| 54 Mbps           | OFDM-64QAM        |
| Auto              |                   |

### 3.1.8 Setting signal modulation method (Modulation)

Sets the modulation method for the measured signal.

- 1. Press (Entry keys) or turn the rotary knob to move the cursor to "Modulation."
- 2. Press Set Entry key.
- 3. The selection window opens.
- 4. Press (Entry keys) or turn the rotary knob to move the cursor to the item you wish to select.
- 5. Press Set.

When the setting is completed, the set modulation method appears in [] for Modulation. The following settings are available:

- OFDM-BPSK: OFDM (Orthogonal Frequency Division Multiplex) modulation. For each sub-carrier, BPSK (Binary Phase Shift Keying) is used.
- OFDM-QPSK: OFDM modulation. For each sub-carrier, QPSK (Quadrature Phase Shift Keying) is used.
- OFDM-16QAM: OFDM modulation. For each sub-carrier, 16QAM (16-Quadrature Amplitude Modulation) is used.
- OFDM-64QAM: OFDM modulation. For each sub-carrier, 64QAM (64-Quadrature Amplitude Modulation) is used.
- DBPSK: DBPSK (Differential Binary Phase Shift Keying) modulation
- DQPSK: DQPSK (Differential Quadrature Phase Shift Keying) modulation
- $\bullet$  CCK-5.5 Mbps: CCK (Complementary Code Keying) modulation.
  - Transmits 4 bits per symbol.
- CCK-11 Mbps: CCK modulation.

  Transmits 8 bits per symbol.

# 3.1.9 Setting filter (Filter)

Set whether filter processing should be used when analyzing signals conforming to IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK).

- 1. Press (Entry keys) or turn the rotary knob to move the cursor to "Filter" item.
- 2. Press Set (Entry key).
- 3. The selection window opens.
- 4. Press (Entry keys) or turn the rotary knob to move the cursor to the item to select.
- 5. Press Set

When the setting is completed, the set filter appears in the square brackets [] at the right of the "Filter" item.

The following settings are available.

• No Filter: Analyzes signals without using the filter processing.

• Rectangular: Analyzes signals that passed through the rectangular

filter.

• Gaussian: Analyzes signals that passed through the Gaussian

filter. Refer to Section 3.1.10, "Setting BT product

(BT)" for more information on the BT product.

• Root Raised Cos: Analizes signals that passed through the Root Raised

Cosine filter. Refer to 3.1.11, "Setting roll off factor

 $(\alpha)$ " for more information on the roll off factor setting.

This item does not appear if communications standard other than IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) is selected.

### 3.1.10 Setting BT product (BT)

Set the BT product when the Gaussian filter is selected as described in Section 3.1.9, "Setting Filter."

- 1. Press (Entry keys) or turn the rotary knob to move the cursor to "BT" item.
- 2. Press Set or input a value to set using the numeric keypad.
- 3. The setting window opens.
- 4. Press (Contry keys), turn the rotary knob, or use the numeric keypad to input a value to set.
- 5. Press Set.

When the setting is completed, the set BT product appears in the square brackets [] at the right of the "BT" item.

This item does not appear if communications standard other than IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) is selected or if any other filter than the Gaussian filter is selected.

# 3.1.11 Setting roll off factor ( $\alpha$ )

Set the roll off factor when the Root Raised Cosine filter is selected as de-scribed in Section 3.1.9, "Setting Filter."

- 1. Press  $\bigcirc$  (Entry keys) or turn the rotary knob to move the cursor to " $\alpha$ " item.
- 2. Press Set or input a value to set using the numeric keypad.
- 3. The setting window opens.
- 4. Press (Entry keys), turn the rotary knob, or use the numeric keypad to input a value to set.
- 5. Press Set.

When the setting is completed, the set roll off factor appears in the square brackets [] at the right of the " $\alpha$ " item.

This item does not appear if communications standard other than IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) is selected or if any other filter than the Root Raised Cosine filter is selected.

# 3.1.12 Setting trigger (Trigger)

Set the trigger mode as shown below.

This function is valid only during CCDF measurement.

| • | Setting | the | trigger | mode |
|---|---------|-----|---------|------|
|---|---------|-----|---------|------|

- 1. Press (Entry keys) or turn the rotary knob to move the cursor to Trigger item.
- 2. Press Set (Entry key).
- 3. The selection window opens.
- 4. Press (Contry keys) or turn the rotary knob to move the cursor to the item you wish to select.
- 5. Press Set

When setting is completed, the set trigger mode (shown below) appears in square brackets [] on the "Trigger" line.

- Free Run: Detects and measures the burst in accordance with the internal timing.
- Wide IF: Detects and measures the burst by an internal Wide IF Video trigger.
- External: Measures the first burst detected starting from the point in time when an external trigger signal is first received from Trig/Gate In connector on the rear panel.

When Wide IF is selected, the edge and delay of the trigger signal must be set.

When External is selected as trigger mode, the edge and delay of the trigger signal must be set as shown below.

#### · Setting trigger edge

- 1. Press (Entry keys) or turn the rotary knob to move the cursor to Trigger Edge.
- 2. Press [Set] (Entry key).
- 3. The selection window opens.
- 4. Press (Entry keys) or turn the rotary knob to move the cursor to the item you wish to select.
- 5. Press [Set].

When the setting is completed, the set condition (shown below) appears in square brackets [] on "Trigger Edge" line.

- Rise: Synchronizes with the rising edge (of the pulse signal) of the trigger signal.
- Fall: Synchronizes with the falling edge (of the pulse signal) of the trigger signal.

#### · Setting trigger delay

- 1. Press (\(\sigma\) (Entry keys) or turn the rotary knob to move the cursor to Trigger Delay.
- 2. Press Set or input the value you wish to set using the numeric keypad.
- 3. The setting window opens.
- 4. Press (Entry keys) or turn the rotary knob, or use the numeric keypad to input the value you wish to set.
- 5. Press Set.

When the setting is completed, the set delay time appears in square brackets [] on the "Trigger Delay" line.

#### · Setting trigger level

- 1. Press (Entry keys) or turn the rotary knob to move the cursor to Trigger Level.
- 2. Press [Set] (Entry key).
- 3. The selection window opens.
- 4. Press (Entry keys) or turn the rotary knob to move the cursor to the item you wish to select.
- 5. Press Set

When the setting is completed, the set condition (shown below) appears in square brackets [] on "Trigger Level" line.

- Low: Sets the trigger measurement start level to "Low."
- Middle: Sets the trigger measurement start level to "Middle."
- High: Sets the trigger measurement start level to "High."

# 3.1.13 Setting table for frequency characteristic correction factors (Correction)

To correct the frequency-dependent values (such as characteristics and loss of the cable for connecting the measuring object with the Analyzer); the correction factors can be stored in the internal memory of the spectrum analyzer and the measured values can be displayed after adding these correction factors to the measured values.

The use of this function enables direct reading of the required measured values on the analyzer.

Refer to the separate "MS268\*A Spectrum Analyzer operation manual Vol. 2, Detailed Panel Operation" or "MS860\*A Digital Mobile Radio Transmitter Tester operation manual Vol.2, Detailed Panel Operation" for more information on how to store the frequency characteristic correction factors (correction data) in the internal memory of the spectrum analyzer.

Five correction factor tables can be stored in the internal memory. How to select a correction factor table from among the five tables internally stored, is described below.

#### · Selecting correction factor table

- 1. Press [Amplitude] to display the Amplitude function label at the function keys.
- 2. Press F4 (Correction) to open the window to select a correction factor table.
- 3. Press (Entry keys) or turn the rotary knob to move the cursor to the correction factor table you wish to select.
- 4. Press Set

When the setting is completed, the set correction factor table is displayed in the Correction field at the lower right of the screen.

# 3.1.14 Setting pre-amplifier (Pre Ampl.)

This function is available when the optional MS2681A-08/MS2683A-08/MS8608A-08/MS8609A-08 is installed.

#### · Setting Pre-Amplifier

- 1. Press Amplitude to display the Amplitude function label at the function keys.
- 2. Press F5 (Pre Ampl.) to switch the Pre-Amplifier function ON and OFF.

When the setting is completed, "On" or "Off" is displayed in the Pre Ampl field at the lower right of the screen.

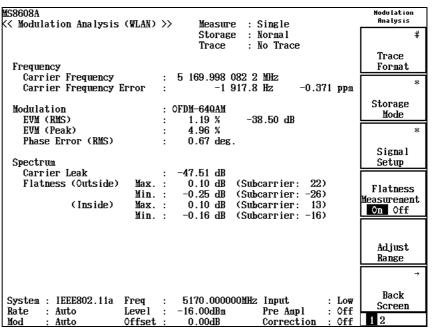
When the screen is moved to the Spurious Emission measurement screen while the Pre-Amplifier function is set to ON, it is forcibly set to OFF.

# 3.2 Analyzing Modulation Accuracy

Press F2 (Modulation Analysis) on the Setup Common Parameter screen to move to the Modulation Analysis screen for modulation accuracy analysis measurement.

This section explains the measured results and setting parameters shown on the Modulation Analysis screen (modulation accuracy analysis) as well as operation cautions.

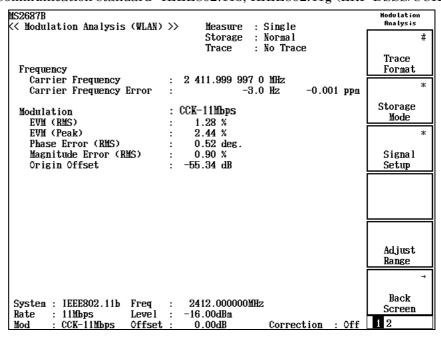
# 3.2.1 Explanation of measured results


This section explains the measured results shown on the Modulation Analysis screen (modulation accuracy analysis). Before performing measurements, adjust the RF input level to optimize the level settings inside the measuring instrument. For the RF input level adjustment method, refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)."

#### Results of modulation accuracy measurement

The screen shown below appears when "No Trace" is selected for Trace Format. Refer to Section 3.2.2, "Changing waveform display format" for more information on how to set the trace format.

Communication standard: IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM), IEEE802.11g (DSSS-OFDM)


When communication standard HiSWANa is chosen, Data Rate is except Auto.



Communication standard: HiSWANa Date Rate is Auto.

| MS8608A<br><< Modulation Analysi:              | s (WLAN) >>       |          |                          |        |              | Modulation<br>Analysis |
|------------------------------------------------|-------------------|----------|--------------------------|--------|--------------|------------------------|
|                                                |                   | Stor     | age : Avera<br>e : No Ti |        | 5/ 5)        | #                      |
| Frequency                                      |                   |          |                          |        |              | Trace<br>Format        |
| Carrier Frequency<br>Carrier Frequency         | Error :           | 5 169.99 | 9 582 7 MHz<br>-417.3 Hz | -0.08  | 31 ppm       | ж                      |
| Modulation                                     | :BPSK             | QPSK     | 16QAM 640                | AM To  | otal<br>1.20 | Storage<br>Mode        |
| EVM (RMS)%<br>EVM (Peak)%<br>Phase Err(RMS)deg | : 4.00<br>.: 0.65 |          | 4.03<br>0.65             |        | 4.03<br>0.65 | ж                      |
| Number of symbols                              |                   |          |                          |        |              | Signal<br>Setup        |
| The Latest Burst<br>Total                      | : 3<br>: 15       | 0<br>0   | 3<br>15                  | 0      |              |                        |
| Number of Measured                             | Bursts<br>: 5     | 0        | 5                        | 0      |              |                        |
|                                                |                   | ·        | Ü                        | ·      |              |                        |
| Spectrum<br>Carrier Leak                       | :                 | -22.52 d | В                        |        |              | Adjust<br>Range        |
|                                                |                   |          |                          |        |              | <b>→</b>               |
| System : HiSWANa<br>Rate : Auto                | Freq :<br>Level : |          | 0000MHz Inpu             | πt     | : Low        | Back<br>Screen         |
| Mod : Auto                                     | Offset :          |          | _                        | ection | : Off        | 1 2                    |

#### Communication standard: IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)



#### Frequency

#### (1) Carrier Frequency

Displays the frequency of the measured signal obtained by the phase-locus method in MHz units.

#### (2) Carrier Frequency Error

Displays the above Carrier Frequency error against the set frequency in Hz and ppm units.

#### Modulation

#### (1) Modulation

Displays the modulation method for the measured signal.

#### (2) EVM (RMS)

Displays the effective value of the error vector magnitude (in % and dB units) of the signal measured at the symbol judgment point.

Note that the % unit value only is displayed for the communication standard of IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK).

When Communication standard is HiSWANa and Data Rate is Auto, displays a measurement result of every modulation method.

#### (3) EVM (Peak)

Displays the maximum value of the error vector magnitude (in % units) of the signal measured at the symbol judgment point.

When Communication standard is HiSWANa and Data Rate is Auto, displays a measurement result of every modulation method.

#### (4) Phase Error (RMS)

Displays the effective value of the phase error (in degree units) of the signal measured at the symbol judgment point.

When Communication standard is HiSWANa and Data Rate is Auto, displays a measurement result of every modulation method.

#### (5) Magnitude Error (RMS)

Displays the effective value of the magnitude error (in %) of the signal measured at the symbol judgment point.

#### (6) Origin Offset

Displays the origin offset (in dB units) of the signal measured.

#### Number of symbols

#### (1) The Latest Burst

When Communication standard is HiSWANa and Data Rate is Auto, measured number of OFDM symbols is displayed for every modulation method.

#### (2) Total

When Communication standard is HiSWANa and Data Rate is Auto, The number of OFDM symbols covering all PHY bursts is made applicable to measurement.

It is displayed for every abnormal-conditions system.

However, when chosen except Average by the clause of 3.2.14 Averaging(Storage mode), it does not display.

#### Number of Measured Bursts

When Communication standard is HiSWANa and Data Rate is Auto, measured number of PHY burst is displayed for every modulation method.

However, when chosen except Average by the clause of 3.2.14 Averaging(Storage mode), it does not display.

#### Spectrum

#### (1) Carrier Leak

When measuring the OFDM modulation signal, displays the 0-level of the sub-carrier (carrier leakage component) of the signal measured in dB units.

#### (2) Flatness

When measuring the OFDM modulation signal, displays spectrum flatness of the outside sub-carrier and the inside sub-carrier in dB units.

The flatness measurement takes several seconds. This is longer than the measurement time of other modulation analysis items. To shorten the overall modulation analysis time, do not execute the flatness measurement. Message of "Measuring Now---" is displayed when communications standard is HiSWANa.

The measured results explained are the values obtained by the analysis of the symbol length set in Analysis Length. See Section 3.2.6 "Setting analysis length" for more information on how to set the analysis length.

# 3.2.2 Changing waveform display format (Trace Format)

This section explains how to change the display format for a waveform appearing on the screen.

- · Selecting the display format
- 1. Press F1 (Trace Format) on the Modulation Analysis screen.
- 2. The window for format selection opens.
- 3. Press (Entry keys) or turn the rotary knob to move the cursor to the item you wish to select.
- 4. Press Set.

After setting, the waveform displayed is switched and the format selected appears in the field showing the trace format at the top right of the screen. The following formats are available:

• No Trace: Displays numeric value results only.

• Constellation: Displays constellation.

When communications standard HiSWANa and Data Rate is Auto, displays a waveform

for every modulation method.

• Eye Diagram: Displays the eye diagram.

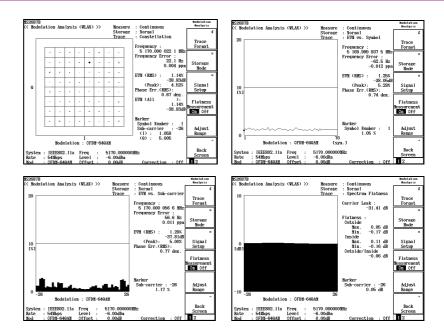
EVM vs. Symbol: Displays EVM for each symbol.
 EVM vs. Chip: Displays EVM for each chip.

• Phase Error vs. Symbol: Displays phase error for each symbol.

• Phase Error vs. Chip: Displays phase error for each chip.

• EVM vs. Sub-carrier: When measuring the OFDM modulation

signal, displays EVM for each sub-carrier. When communications standard HiSWANa and Data Rate is Auto, displays a waveform


for every modulation method.

• Spectrum Flatness: When measureing the OFDM modulaiton

Burst signal, displays spectrum flatness. This cannot be selected when F4 (Flatness Measurement) is set to Off or IQ input or communications standard HiSWANa and

Data Rate is Auto.

Note: When the level fluctuates, correct measurement may not be able to be obtained.



#### 3.2.3 Changing input signal settings (Signal Setup)

This section explains how to change the settings on the measured signal.

- · Setting the input signal
- Press [F3] (Signal Setup) on the Modulation Analysis screen. 1.
- 2. Function label for Signal Setup is displayed.
- Press the function key for the item to be set. 3.
- The setting screen opens.

The following items are available. Refer to Section 3.2.4, "Changing signal transmission rate (Data Rate)" through 3.2.9, "Changing threshold of modulation accuracy." for more information on each item.

• Data Rate: Changes transmission rate. Modulation: Changes modulation method.

Analysis Length: Changes signal length (number of symbols/chips for

modulation analysis).

Analysis Start: Changes analysis start position.

EVM Threshold: Selects whether threshold setting of modulation accuracy

carries out or not.

• Threshold Level: Changes threshold of modulation accuracy.

# 3.2.4 Changing signal transmission rate (Data Rate)

Changes the transmission rate setting for the measured signal.

- Changing the transmission rate
- 1. Press [F3] (Signal Setup) on the Modulation Analysis screen to display the function label for Signal Setup.
- 2. Press F1 (Data Rate) to open the setting window.
- 3. Press (Entry keys) or turn the rotary knob to move the cursor to the item you wish to select.
- 4. Press Set

After setting, another measurement is taken. When no values are changed or when Cancel is selected, the signal is not re-measured.

According to the set transmission rate, the corresponding modulation method is automatically set as is defined in the communications standard.

Refer to Section 3.1.7, "Setting signal transmission rate (Data Rate)" for the transmission rate that can be set and the modulation method that is automatically set according to the rate.

Refer to Section 3.2.5, "Changing signal modulation method (Modulation)" for changing the modulation method.

# 3.2.5 Changing signal modulation method (Modulation)

Changes the modulation method setting for the measured signal.

- · Changing the modulation method
- 1. Press F3 (Signal Setup) on the Modulation Analysis screen to display the function label for Signal Setup.
- 2. Press F2 (Modulation) to open the setting window.
- 3. Press (Contry keys) or turn the rotary knob to move the cursor to the item you wish to select.
- 4. Press Set

After setting, another measurement is taken. When no values are changed or when Cancel is selected, the signal is not re-measured.

Refer to Section 3.1.8, "Setting signal modulation method (Modulation)" for the modulation method that can be set.

Note that this parameter cannot be set when "Auto" is set for Data Rate in Section 3.1.7, "Setting signal transmission rate (Data Rate)" or Section 3.2.4, "Changing signal transmission rate (Data Rate)."

# **CAUTION** $\wedge$

Note that the modulation accuracy analysis cannot be measured for the following signals.

(Target System:HiperLAN2):

- Signals for which the modulation mode changes in the middle of measurement, including:
  - 1. Burst signals for which the modulation mode changes within a burst
  - Continuous signals for which the modulation mode changes in the middle of measurement (except for constant modulation)

# 3.2.6 Setting analysis length (Analysis Length)

Sets the number of symbols to be analyzed (measured signal length excluding preamble).

- · Setting the analysis length
- 1. Press [F3] (Signal Setup) on the Modulation Analysis screen to display the function label for Signal Setup.
- 2. Press [F3] (Analysis Length) to open the setting window.
- 3. Press (Entry keys) or turn the rotary knob, or use the numeric keypad to input the analysis length in symbol units or chip units.
- 4. Press Set

After setting, another measurement is taken. When no values are changed or when Cancel is selected, the signal is not re-measured.

If the analysis length is set longer than the measured signal length, the excess part of the signal length cannot be analyzed correctly. Be sure to set so that (Analysis length)  $\leq$  (Measured signal length excluding preamble).

Note that this parameter cannot be set when "Auto" is set for Data Rate in Section 3.1.7, "Setting Signal Transmission Rate (Data Rate)" or Section 3.2.4, "Changing signal transmission rate (Data Rate)."

# 3.2.7 Setting analysis start (Analysis Start)

Sets the start position to be analyzed.

- · Setting the analysis start
- 1. Press [F3] (Signal Setup) on the Modulation Analysis screen to display the function label for Signal Setup.
- 2. Press F4 (Analysis Start) to open the setting window.
- 3. Press (Entry keys) or turn the rotary knob, or use the numeric keypad to input the analysis start in symbol units.
- 4. Press Set

After setting, another measurement is taken. When no values are changed or when Cancel is selected, the signal is not re-measured. Note that this parameter cannot be set When Communication standard is except HiSWANa or when "Auto" is set for Data Rate in Section 3.1.7, "Setting Signal Transmission Rate (Data Rate)" or Section 3.2.4, "Changing signal transmission rate (Data Rate)."

# 3.2.8 Changing threshold of modulation accuracy (EVM Threshold)

Selects whether threshold setting of modulation accuracy carries out or not.

- · Changing threshold of modulation accuracy
- 1. Press [F3] (Signal Setup) on the Modulation Analysis screen to display the function label for Signal Setup and Press (More) to display the second page of the function label.
- 2. Pressing F1 (EVM Threshold On Off) sets the function to set up the threshold of modulation accuracy to On/Off.

Except when Communication standard is HiSWANa and Data Rate is auto, threshold of modulation accuracy cannot be changed.

# 3.2.9 Setting threshold of modulation accuracy (Threshold Level)

Sets the threshold of modulation accuracy.

| • s | etting threshold of modulation accuracy                           |
|-----|-------------------------------------------------------------------|
| 1.  | Press F3 (Signal Setup) on the Modulation Analysis screen to dis- |
|     | play the function label for Signal Setup and Press (More) to      |
|     | display the second page of the function label.                    |
| 2.  | Press F2 (Threshold Level) to open the setting window.            |
| 3.  | Press (Entry keys) or turn the rotary knob, or use                |
|     | the numeric keypad to input the threshold of modulation accuracy. |
| 3.  | Press Set.                                                        |
|     |                                                                   |
|     |                                                                   |

Except when Communication standard is HiSWANa and Data Rate is auto or when EVM Threshold is Off, threshold of modulation accuracy cannot be set.

# 3.2.10 Selecting waveform display format (View Selection)

• Outside Pair:

Selects the display format for the constellation waveform.

This setting is invalid in the following cases:

- When the communications standard for the system to be measured (Target System) is set to IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK).
- When the waveform display format (Trace Format) is set to other than "Constellation".

When Communication standard is HiSWANa and Data Rate is Auto cannot be set First Symbol and Last Symbol.

| <ul> <li>Setting the wave</li> </ul> | eform display format                                        |
|--------------------------------------|-------------------------------------------------------------|
| 1. Press (                           | More) on the Modulation Analysis screen to display the      |
| second page                          | of the function label.                                      |
| 2. Press F1 (                        | View Selection) to open the selection window.               |
| 3. Press ( \rightarrow)              | (Entry keys) or turn the rotary knob to move                |
| the cursor to                        | the item you wish to select.                                |
| 4. Press Set.                        |                                                             |
|                                      |                                                             |
| The following way                    | veform display formats are available:                       |
| • All:                               | Displays all sub-carriers for the symbol specified with     |
|                                      | the analysis length.                                        |
| • First Symbol:                      | Displays only the top symbol of the signal.                 |
| • Last Symbol:                       | Displays only the last symbol of the signal.                |
|                                      | Calculates the last symbol location as (Measured            |
|                                      | signal length) = (Analysis length).                         |
| • Pilot Only:                        | Displays only sub-carriers with pilots.                     |
|                                      | The pilots should be at sub-carrier $-21$ , $-7$ , $+7$ and |
|                                      | +21.                                                        |
| • One Sub-carrie                     | r:Displays only the sub-carriers specified with markers     |
|                                      | Use \times keys to specify the sub-carriers                 |
|                                      | with markers.                                               |

Displays only sub-carrier -26 and +26.

# 3.2.11 Changing error circle scale (Error Scale)

This section explains how to display the error circle in the constellation waveform display.

This setting is invalid in the following cases:

- When the modulation method is set to OFDM-16QAM or OFDM-64QAM.
- When the transmission rate (Data Rate) is set to "Auto".
- When the waveform display format (Trace Format) is set to other than "Constellation".

Note that when the modulation method is changed to OFDM-16QAM or OFDM-64QAM while an error circle is displayed, the error circle display disappears.

- · Setting the error circle
- 1. Press (More) on the Modulation Analysis screen to display the second page of the function label.
- 2. Press F2 (Error Scale). The following function labels appear for error scale selection:
- [F1] (5%): Draws an error circle with 5% error scale.
- [F2] (10%): Draws an error circle with 10% error scale.
- F3 (20%): Draws an error circle with 20% error scale.
- [F4] (35%): Draws an error circle with 35% error scale.
- F5 (OFF): Deletes the error circle.
- [F6] (return): Returns to the previous function label display.

# 3.2.12 Changing vertical scale for waveform display (Vertical Scale)

This section explains how to change the vertical scale for waveform display.

This setting is invalid when the waveform display format (Trace Format) is set to one of the following:

- No Trace
- Constellation
- Eye Diagram
- · Setting the vertical scale
- 1. Press (More) on the Modulation Analysis screen to display the second page of the function label.
- 2. Press F3 (Vertical Scale). The following function labels appear for vertical scale selection:

When the waveform display format is set to EVM vs. Symbol or EVM vs. Sub-carrier:

- F1 (5%): Sets the maximum value of the vertical scale to 5%.
- [F2] (10%): Sets the maximum value of the vertical scale to 10%.
- F3 (20%): Sets the maximum value of the vertical scale to 20%.
- [F4] (50%): Sets the maximum value of the vertical scale to 50%.
- F5 (100%): Sets the maximum value of the vertical scale to 100%.
- [F6] (return): Returns to the previous function label display.

When the waveform display format is set to Phase Error vs. Symbol:

- [F1] (5 deg): Sets the maximum value of the vertical scale to 5°.
- F2 (10 deg): Sets the maximum value of the vertical scale to 10°.
- [F3] (20 deg): Sets the maximum value of the vertical scale to 20°.
- F4 (50 deg): Sets the maximum value of the vertical scale to 50°.
- [F5] (100 deg): Sets the maximum value of the vertical scale to 100°.
- [F6] (return): Returns to the previous function label display.

# 3.2.13 Displaying marker

When the waveform display format is set to other than "No Trace", a marker can be displayed on the waveform.

#### · Displaying marker

- 1. Press [Marker] to display the Marker function label.
- 2. Press F1 (Marker) to switch between the marker displays "Normal" and "Off".

When the marker display is set to "Normal," a diamond (♦) mark appears on the waveform.

#### · Moving marker

Press (\( \) (Entry keys), or use the rotary knob or the ten-key pad to move the marker. Items moved and their step values are shown below.

Constellation waveform display format:

|                   | IEEE802.11a, HiperLAN2,<br>HiSWANa,<br>IEEE802.11g (ERP-OFDM),<br>IEEE802.11g (DSSS-OFDM) |            | IEEE802.11b,<br>IEEE802.11g<br>(ERP-DSSS/CCK) |                       |
|-------------------|-------------------------------------------------------------------------------------------|------------|-----------------------------------------------|-----------------------|
|                   | Transferred items:                                                                        | Step value | Transferred items:                            | Step value            |
| Up & down<br>keys | Subcarrier                                                                                | 1          | Chip<br>number                                | Analysis<br>length/20 |
| Rotary knob       | Symbol<br>number                                                                          | 1          | Chip<br>number                                | 1                     |
| Numeric<br>keypad | Symbol<br>number                                                                          | 1          | Chip<br>number                                | 1                     |

Eye Diagram waveform display format:

|                | IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) |                    |  |
|----------------|-----------------------------------------|--------------------|--|
|                | Transferred items:                      | Step value         |  |
| Up & down keys | Chip number                             | Analysis length/20 |  |
| Rotary knob    | Chip number                             | 0.1                |  |
| Numeric keypad | Chip number                             | 0.1                |  |

EVM vs. Symbol or Phase Error vs. Symbol waveform display format:

|                    | IEEE802.11a, HiperLAN2,<br>HiSWANa,<br>IEEE802.11g (ERP-OFDM),<br>IEEE802.11g (DSSS-OFDM) |            | IEEE802.11b,<br>IEEE802.11g<br>(ERP-DSSS/CCK) |                       |
|--------------------|-------------------------------------------------------------------------------------------|------------|-----------------------------------------------|-----------------------|
| Transferred items: |                                                                                           | Step value | Transferred items:                            | Step value            |
| Up & down<br>keys  | Symbol<br>number                                                                          | 10         | Chip<br>number                                | Analysis<br>length/20 |
| Rotary knob        | Symbol<br>number                                                                          | 1          | Chip<br>number                                | 1                     |
| Numeric<br>keypad  | Symbol<br>number                                                                          | 1          | Chip<br>number                                | 1                     |

EVM vs. Sub-carrier or Spectrum Flatness waveform display format:

|                | IEEE802.11a, HiperLAN2, HiSWANa,<br>IEEE802.11g (ERP-OFDM),<br>IEEE802.11g (DSSS-OFDM) |            |  |
|----------------|----------------------------------------------------------------------------------------|------------|--|
|                | Transferred items:                                                                     | Step value |  |
| Up & down keys | Subcarrier                                                                             | 10         |  |
| Rotary knob    | Subcarrier                                                                             | 1          |  |
| Numeric keypad | Subcarrier                                                                             | 1          |  |

# 3.2.14 Averaging (Storage Mode)

This section explains how to set the averaging process for measured results.

#### · Setting averaging process

- 1. Press F2 (Storage Mode) on the Modulation Analysis screen to display the Storage Mode function labels.
- 2. Press F2 (Average Count) to open the setting window.
- 3. Press (Contry keys), turn the rotary knob or use the ten-key pad to input the average count.
- 4. Press Set.
- 5. On the Storage Mode menu, press F1 (Storage Mode).
- 6. Press ( ) (Entry keys) or turn the rotary knob to select "Average."
- 7. Press Set

After setting, another measurement is taken.

If the average count is changed when the storage mode is set to "Average," another measurement is taken after completing the setting. When no values are changed or when Cancel is selected, measurement is not taken again.

Refresh Interval: Sets the update timing for the average value display. After setting is changed, another measurement is taken.

- Every: Updates the display after every measurement.
- Once: Updates the display after measurements are taken up to the set average count.

In addition to Average, the following modes can be selected for the storage mode:

- Normal: Updates and displays the measured result after every measurement.
- Average: Averages and displays the measured result after each measurement.
- Overwrite: Updates the measured result after each measurement by overwriting the waveform, though no averaging is performed. However, note that when the waveform display format is to "No Trace," the waveform is not overwritten.

### 3.2.15 Optimizing measurement range (Adjust Range)

We recommend that you optimize the measurement range using the Adjust Range function before performing measurement. However, you need to optimize the measurement range only once while you are inputting data at approximately the same level.

Implement the Adjust Range function by pressing [F5] (Adjust Range) in a measurement screen.

When the measurement range is optimized, the internal level diagram is automatically changed so that the internal A/D converter for analysis can be used in optimal condition. In other words, the internal circuit is adjusted to maximize the dynamic range (S/N) of the A/D converter.

Since the internal level diagram is changed according to the measured signal level, the measured signal must be input while the measurement range is being optimized. The Adjust Range function may not normally operate with signals that fluctuate greatly.

The optimization of the measurement range is disabled during IQ input.

# 3.2.16 Calibration function (Calibration)

This section describes how to perform calibration to acquire an accurate measurement result.

The calibration function includes three functions: level calibration using a built-in calibration signal, pre-selector tuning and level calibration using the built-in power meter. Perform one of these functions as required.

#### Level calibration using built-in calibration signal

Calibrate the internal signal path based on built-in calibration signals of the measuring instrument. Perform this calibration when you make level measurements. However, this level calibration function does not have to be used often under an environment with stable temperature conditions.

The level calibration function using a built-in calibration signal is disabled during IQ input.

#### Performing level calibration using built-in calibration signal

- 1. Move to the measurement screen.
- 2. Press (More) to display the second page of the function label.
- 3. Press [F5] (Calibration) to display the Calibration function label.
- 4. Press [F1] (Level Calibration) to implement level calibration function using a built-in calibration signal.

Calibration signals do not have to be input from the outside because this level calibration function uses the built-in calibration signals of the measuring instrument.

#### Pre-selector tuning

Signals with a frequency over 3.201 GHz at analysis go through the pre-selector (band pass filter with variable tuning patterns) inside the measuring instrument. Therefore, you need to tune the pre-selector before analyzing broadband signals. Tune the pre-selector before carrying out modulation analysis or level measurement.

The pre-selector tuning is disabled during IQ input or if a frequency below 3.201 GHz is set.

#### Performing pre-selector tuning

- Move to the measurement screen.
- 2. Press (More) to display the second page of the function label.
- 3. Press [F5] (Calibration) to display the Calibration function label.
- 4. Press F2 (Pre-selector Tuning) to implement the pre-selector tuning function.

Implement the pre-selector tuning function while inputting the signal to be measured or a modulated signal equivalent to the signal to be measured.

#### Level calibration using built-in power meter

When using the MS860x as the analyzer main body, a level calibration function using the built-in power meter is available by which level measurement can be performed with high accuracy. We recommend implementing this level calibration function for level measurement. It is not necessary to implement the level calibration function using the power meter frequently in an environment with a stable ambient temperature. If the frequency used fluctuates greatly, however, it is recommended to implement the level calibration function using the built-in power meter.

The level calibration function using the built-in power meter is disabled when IQ is input and the measured signal is the burst signal, or when either Option 36 or 37, the power meter upper limit frequency expansion option (6 GHz), is not installed and the frequency is greater than 3 GHz.

#### Performing level calibration using built-in power meter

- 1. Move to the measurement screen.
- 2. Press (More) to display the second page of the function label.
- 3. Press [F5] (Calibration) to display the Calibration function label.
- 4. Press [F3] (Level Calibration (using PM)) to implement the level calibration function using the power meter.

The level calibration function using the power meter calibrates the measured signal value in the tester mode with the value measured by the power meter by comparing them. Therefore, the signal to be measured must be input while the level calibration function using the power meter is implemented. Zero-point calibration must be implemented for the power meter before starting level calibration using the power meter.

#### Checking calibration status

It is possible to display the status of each calibration: level calibration using a built-in calibration signal, pre-selector tuning and level calibration using the power meter. One of the following messages is displayed in the center of the screen according to the current calibration status.

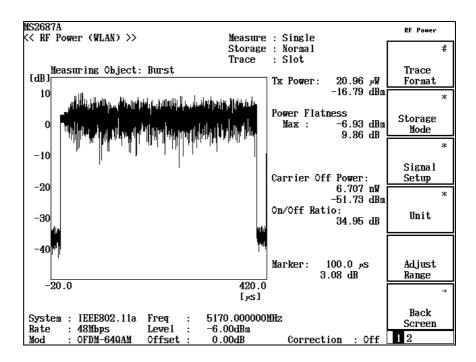
| Status               | Level calibration<br>using built-in<br>calibration signal | Pre-selector<br>tuning                                   | Level calibration using built-in power meter             |
|----------------------|-----------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|
| Normal termination   | Complete (date)                                           | Complete (date;<br>frequency used<br>during calibration) | Complete (date;<br>frequency used<br>during calibration) |
| Not<br>calibrated    | No calibration                                            | No calibration                                           | No calibration                                           |
| Abnormal termination | Incomplete                                                | Incomplete                                               | Incomplete                                               |

#### Checking calibration status

- 1. Move to the measurement screen.
- 2. Press (More) to display the second page of the function label.
- 3. Press [F5] (Calibration) to display the Calibration function label.
- 4. Press [F5] (Calibration Status) to display the calibration status.

# 3.3 Measuring Transmit Power

Press F3 (RF Power) on the Setup Common Parameter screen to move to the transmit power measurement screen.


This section explains measured results and setting parameters shown on the RF Power screen (transmit power measurement) as well as operation notes.

# 3.3.1 Explanation of measured results

This section explains the measured results shown on the RF Power screen (transmit power measurement). Before performing measurements, adjust the RF input level to optimize the level settings inside the measuring instrument. Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on how to adjust the RF input level.

#### Results of transmit power measurement

The screen shown below appears when "Slot" is selected for Trace Format. Refer to Section 3.3.2, "Changing waveform display format (Trace Format)" for more information on how to set the trace format.



#### TX Power

Displays the average power in one slot of the measured signal in dBm and W units.

#### Power Flatness

#### (1) Max

Displays the maximum momentary power in one slot of the measured signal in dBm or W units. The ratio between it and the reference (average power or maximum momentary power) are also displayed in dB or % units.

#### (2) Carrier Off Power

Displays the average power while transmission is Off in dBm and W units.

However, when the Off section is below  $20 \mu$  sec, it cannot measure

This item is not displayed if Continuous is selected as the signal to be measured.

#### (3) On/Off ratio

Displays the ratio between the transmit power and the average power while transmission is Off in dB units.

This item is not displayed if Continuous is selected as the signal to be measured.

The measured results explained here is the value obtained by analyzing the symbol length that is set for Analysis Length. Refer to Section 3.3.3, "Changing analysis length (Analysis Length)" for more information on how to change the analysis length.

# CAUTION /



When Target System is HiperLAN2, note that the transmitter power cannot be measured in the following case:

Power time mask measurement

# 3.3.2 Changing waveform display format (Trace Format)

This section explains how to change the display format for a waveform appearing on the screen.

#### Selecting the display format

- 1. Press F1 (Trace Format) on the RF Power screen.
- 2. The format selection window opens.
- 3. Press (\(\sigma\) (Entry keys) or turn the rotary knob to move the cursor to the item to select.
- 4. Press Set

When the setting is completed, the displayed waveform is switched and the selected format appears in the field showing the trace format on the upper right of the screen. The following formats are available.

- Slot: Displays the waveform data in one slot.
   A slot refers to the section from the beginning of a signal and up to the (analysis length + preamble length). The preamble length, which varies depending on the communications standard and signal type, is automatically
- recognized. The preamble length does not have to be set.

   Transient: Displays zoom of the leading and trailing edges of a slot.

  The slot length is the (analysis length + preamble length).

  If the analysis length is not set correctly, the trailing edge may not be displayed. This function is disabled when "Continuous" is selected for the signal to be measured (Measuring Object).

### 3.3.3 Changing analysis length (Analysis Length)

This section explains setting the number of symbols to be analyzed (signal length of a signal to be measured excluding the preamble).

#### Setting the analysis length

- 1. Press [F3] (Signal Setup) on the RF Power screen to display the Signal Setup function label.
- 2. Press F1 (Analysis Length) to open the setting window.
- 3. Press (\( \sigma \) (Entry keys), turn the rotary knob, or use the numeric keypad to enter the analysis length in symbol units or chip units.
- 4. Press Set

After the setting is completed, another measurement is taken. The signal is not re-measured if no values are changed or when Cancel is selected.

If the analysis length is longer than the signal length of a signal to be measured, the section exceeding the signal length cannot be correctly analyzed. If the analysis length is shorter, the trailing edge cannot be correctly analyzed. Set the analysis length so that it is equal to the signal length of the signal to be measured except for the preamble.

The spectrum analyzer itself can also detect the measured signal length where unknown to automatically set the number of symbols. Refer to Section 3.3.4, "Automatic detection of signal length (Ramp-down Detection)" for details.

# 3.3.4 Automatic detection of signal length (Ramp-down Detection)

The spectrum analyzer can automatically detect burst falling edge when the measured signal length is unknown to set appropriate analysis length (number of symbols).

#### Detecting signal length automatically

- 1. Press F3 (Signal Setup) in the RF Power screen to display the Signal Setup function label.
- 2. Pressing [F3] (Ramp-down detection On Off) sets the function to detect burst falling edge to On/Off and set the signal length automatically.

Analysis length cannot be set when Ramp-down Detection is set to On.

# 3.3.5 Changing signal detection method (Preamble Search)

Normally, the spectrum analyzer performs analysis by detecting burst rising edge based on level transition of the measured signal. However, the rising edge of burst signal with gradual or stepwise rise cannot be detected from level transition only. In this case, burst signal rising edge can be detected based on preamble information.

#### Changing signal detection method

- 1. Press [F3] (Signal Setup) in the RF Power screen to display the Signal Setup function label.
- 2. Press F2 (Preamble Search On Off) to select detect burst rising edge from preamble section of the measured signal (On) or from RF level transition (Off).

# 3.3.6 Changing analysis length detection level (Detection Level)

Normally, the spectrum analyzer performs analysis by detecting burst rising/falling edges based on level transition of the measured signal. Set the threshold level for rising/falling edge detection.

#### Changing analysis length detection level

- 1. Press [F3] (Signal Setup) in the RF Power screen to display the Signal Setup function label.
- 2. Press F4 (Detection Level).
- 3. The threshold level input window opens.
- 4. Press (\( \sigma \) (Entry keys) or turn the rotary knob, or use the numeric keypad to input threshold level. Threshold level is set in dB assuming the normal detection level is 0 dB.
- 5. Press Set .

Analysis length detection level cannot be set when Ramp-down detection is set to Off and Preamble Search is set to On.

# 3.3.7 Changing analysis length detection point offset (Detection Offset)

Adjust position in time direction during rising/falling edge of the burst signal in the Transient screen.

#### Changing analysis length detection position offset

- 1. Press F3 (Signal Setup) in the RF Power screen to display the Signal Setup function label.
- 2. Press F5 (Detection Offset).
- 3. The offset value input window opens.
- 4. Press (\(\sigma\) (Entry keys) or turn the rotary knob, or use the numeric keypad to input offset value. Offset value is set in us units.
- 5. Press Set .

Analysis length detection position offset cannot be set when Ramp-down detection is set to Off and Preamble Search is set to On.

# 3.3.8 Changing display unit (Unit)

This section describes how to change the display unit for the measured results. Change the display unit to switch the waveform display and the Power Flatness results.

#### Changing the display unit

- 1. Press F4 (Unit) on the RF Power screen to display the Unit function label.
- 2. Select either of the following displays units:
- F1 (dB): Displays the waveform in dB units. The maximum momentary power is also displayed during Power Flatness in dBm units as well as the ratios between them and the reference in dB units.
- F2 (dBm): Displays the waveform in dBm units. The maximum momentary power is also displayed during Power Flatness in dBm units as well as the ratios between them and the reference in dB units.
- F3 (%): Displays the waveform in % units. The maximum momentary power is also displayed during Power Flatness in W units as well as the ratios between them and the reference in % units.
- [F6] (return): Returns to the previous function label display.

# 3.3.9 Changing reference value for waveform display (Display Reference Level)

This section describes how to change the reference value for waveform display. Change the reference value to switch the reference for waveform display (0 dB or 100%). You can also change the reference (average power or maximum momentary power) for display of the ratio during Power Flatness.

#### Changing the reference value for waveform display

- 1. Press (More) on the RF Power screen to display the second page of the function label.
- 2. Press F1 (Display Ref. Level) to switch between the maximum momentary power and the average power to be used as reference.
- Max.: Sets the maximum momentary power as the reference value.
- Ave.: Sets the average power as the reference value.

# 3.3.10 Changing display range for rising/falling waveforms (Transient Time Scale)

When the rising and falling waveforms of the burst signal are displayed on the Transient screen, the display range of the horizontal axis can be changed.

#### Changing the display range for rising/falling waveforms

- 1. Press (More) on the RF Power screen to display the second page of the function label.
- 2. Press F2 (Transient Time Scale).
- 3. The waveform display range input window opens.
- 4. Press (Entry keys) or turn the rotary knob, or use the numeric keypad to input a waveform display range.
- 5. Press [Set].

The display range for rising/falling waveforms cannot be changed when "Slot" is set for the waveform display format (Trace Format) or when "Continuous" is set for the type of the signal to be measured (Measuring Object).

# 3.3.11 Change the Reference Value of Transmitted Electric Power of Rising and Falling Waveform (Transient Ref.Power)

When burst signal of rising and falling is displayed at the Transient screen, change the reference value of transmitted electric power.

The change method of the reference value of transmitted electric power of rising and falling waveform.

- 1. Press (more) to display the second function label page at the RF Power screen.
- 2. Press F3 (Transient Ref.Power) and transmitted electric power of the whole burst or each transmitted electric power in the rising / falling waveform range is set to reference.

This function is enabled when Target System is IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK).

This function is disenabled when the waveform display format is set as Slot or the Continuous.

# 3.3.12 Smoothing waveform (Smoothing Filter)

This section describes how to select whether or not to smooth the waveform to be measured.

#### Setting the smoothing processing

- 1. Press (More) on the RF Power screen to display the second page of the function label.
- 2. Press [F4] (Smoothing Filter) to switch between performing and not performing the smoothing processing.

# 3.3.13 Averaging (Storage Mode)

This section explains how to set the averaging process for measured results.

#### Setting the averaging process

- 1. Press [F2] (Storage Mode) on the RF Power screen to display the Storage Mode function label.
- 2. Press F2 (Average Count) to open the setting window.
- 3. Press (Entry keys), turn the rotary knob, or use the numeric keypad to input the averaging count.
- 4. Press Set.
- 5. On the Storage Mode menu, press F1 (Storage Mode).
- 6. Press (Entry keys) or turn the rotary knob to select "Average."

#### 7. Press Set

After the setting is completed, another measurement is taken.

If the averaging count is changed when the storage mode is set to "Average," another measurement is also taken after the setting is completed. When no values are changed or when Cancel is selected, measurement is not taken again.

Refresh Interval: Sets the update timing for the average value display. After setting is changed, another measurement is taken.

- Every: Updates the display after every measurement is taken.
- Once: Updates the display after as many measurements as the set averaging count are taken.

In addition to the averaging process, the following modes can be selected for the storage mode:

- Normal: Updates and displays the measured result after every measurement.
- Average: Averages and displays the measured result after every measurement.
- Overwrite: Does not average but updates the measured result after every measurement and overwrites the waveform.

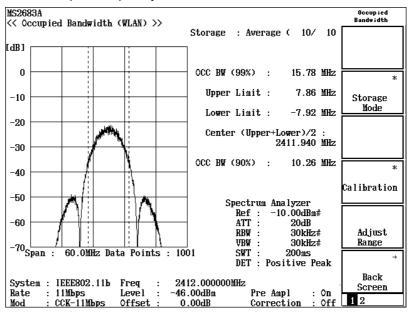
# 3.3.14 Optimizing measurement range (Adjust Range)

We recommend that you optimize the measurement range using the Adjust Range function before performing measurements. However, you need to optimize the measurement range only once while you are inputting data at approximately the same level. Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on measurement range optimization.

# 3.3.15 Calibration function (Calibration)

This section describes how to perform calibration to acquire an accurate measurement result.

The calibration function includes three functions: level calibration using a built-in calibration signal, pre-selector tuning and level calibration using the built-in power meter. Perform one of these functions as required. Refer to Section 3.2.16, "Calibration function (Calibration)" for more information on calibration.


# 3.4 Measuring Occupied Frequency Bandwidth

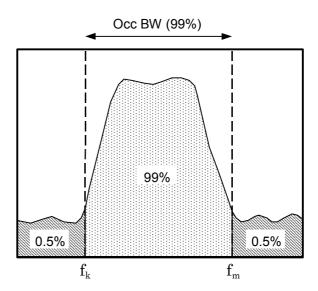
The MX268x30A/MX860x30A can perform occupied frequency bandwidth measurements according to the Technical Regulations Conformity Certification stipulated by TELEC (Telecom Engineering Center) with easy operations. Measurements can also be performed by using any parameter. Press F4 (Occupied Bandwidth) on the Setup Common Parameter screen to move to the occupied bandwidth measurement screen.

# 3.4.1 Explanation of measured results

This section explains the measured results shown on the Occupied Bandwidth screen (occupied frequency bandwidth). Before performing measurements, adjust the RF input level to optimize the level settings inside the measuring instrument. Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on how to adjust the RF input level.

#### Results of occupied frequency bandwidth measurement




#### (1) Occ BW (99%)

Occupied frequency bandwidth. 99% of the total radiation power is defined as the contained frequency width. Actual measurements are performed by using the spectrum analyzer function. Power integration is performed with the measured data according to the upper and lower frequency limits of the set frequency span. The measured result is the difference of frequencies at which the above value becomes 0.5% of the power obtained by integrating the measured data for the whole frequency span.

For the power  $P_n$  (W) measured at frequency  $f_n$ , and the total number of data is N+1;

$$\begin{split} P_{Total} &= \sum_{n=0}^{n=N} P_n \\ \sum_{n=0}^{k} P_n &\leq 0.005 \, P_{Total} \, < \sum_{n=0}^{k+1} P_n \\ \sum_{n=m}^{N} P_n &\leq 0.005 \, P_{Total} \, < \sum_{n=m-1}^{N} P_n \end{split}$$





#### (2) Upper Limit

The upper limit of the occupied frequency bandwidth (Occ BW (99%)). This corresponds to fm calculated in (1).

#### (3) Lower Limit

The lower limit of the occupied frequency bandwidth (Occ BW (99%)). This corresponds to fk calculated in (1).

### (4) Center (Upper + Lower)/2

The center frequency of the occupied frequency bandwidth (Occ BW (99%)). This is the average value of fk and fm calculated in (1).

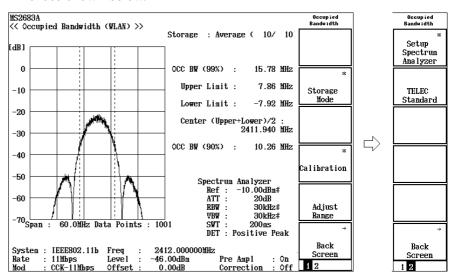
#### (5) Occ BW (90%)

Frequency bandwidth containing 90% of the total radiation power. The measurement method is the same as (1). This value is called "spreading bandwidth" in TELEC's Technical Regulations Conformity Certification.

This item appears when IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) is selected for the target system.

#### (6) Spectrum Analyzer

Setting values for the spectrum analyzer when measuring occupied frequency bandwidth. The setting values cannot be changed when TELEC Standard (Indoor), TELEC Standard (Outdoor) or TELEC Standard is selected as the measurement standard.


The values can be changed when Setup Spectrum Analyzer is selected. Refer to Section 3.4.3, "Measuring by using any measurement parameters" for more information.

### 3.4.2 Selecting measurement standard

The measurement method and standard for occupied frequency bandwidth are stipulated in the Technical Regulations Conformity Certification by TELEC (Japan). The MX268x30A/MX860x30A can easily perform measurements conforming to the stipulations.

#### Selecting the measurement standard

1. Press (More) on the Occupied Bandwidth screen to display the second page of the function label. Select a function label page from those shown below.



- 2. Each soft key corresponds to the following standard.
  - F1 (Setup Spectrum Analyzer):

    Perform measurements by setting any measurement parameters.

    Refer to Section 3.4.3, "Measuring by using any measurement parameters" for more information.

Communication standard: IEEE802.11a, HiperLAN2, HiSWANa

- F2 (TELEC Standard (Indoor)): 5 GHz band low power data communication system
- F3 (TELEC Standard (Outdoor)): 5 GHz band radio access system

Communication standard: IEEE802.11b or IEEE802.11g

• F2 (TELEC Standard): 2.4 GHz band wide band low power data communication system

### Measurement parameters for each standard

Each measurement standard uses the following measurement parameters.

• TELEC Standard (Indoor)

Frequency span: 40 MHz
RBW: 300 kHz
VBW: 300 kHz
Number of sampling: 1001 points
Detection mode: Positive Peak

• TELEC Standard (Outdoor)

Frequency span: 40 MHz
RBW: 30 kHz
VBW: 30 kHz
Number of sampling: 1001 points
Detection mode: Positive Peak

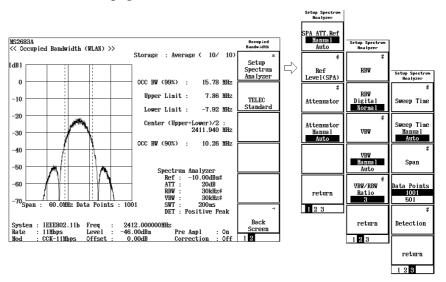
• TELEC Standard

Frequency span: 60 MHz

RBW: 300 kHz

VBW: 300 kHz

Number of sampling: 1001 points


Detection mode: Positive Peak

### 3.4.3 Measuring by using any measurement parameters

Occupied frequency bandwidth is measured by the spectrum analyzer function. Therefore, the measured value for occupied frequency bandwidth varies depending on the parameter values set for the spectrum analyzer. The MX268x30A/MX860x30A can perform measurements conforming to official standards as explained in Section 3.4.2, while also being capable of measurement by setting any measurement parameters for the spectrum analyzer.

### Setting the measurement parameter

- 1. Press (More) on the Occupied Bandwidth screen to display the second page of the function label.
- 2. Press F1 (Setup Spectrum Analyzer).
- 3. The measurement parameter settings are displayed across three function label pages.



#### The first page of the function label

• F1 (SPA ATT Ref Manual/Auto):

Manual: Sets the reference level and the attenuator of the spectrum analyzer regardless of the set value for signal analysis.

Auto: Sets the reference level and the attenuator of the spectrum analyzer to the same value set for signal analysis.

• F2 (Ref Level (SPA)):

When [F1] (SPA ATT Ref Manual/Auto) of the function label is set to Manual, the value set here is set as the reference level for the spectrum analyzer.

• F3 (Attenuator):

When [F4] (Attenuator Manual/Auto) of the function label is set to Manual, the value set here is set to the attenuator of the spectrum analyzer.

• F4 (Attenuator Manual/Auto):

Manual: Sets the attenuator of the spectrum analyzer regardless of the reference level set on F2 (Ref Level (SPA)) of the function label. Press F3 (Attenuator) to set the attenuator.

Auto: Sets the attenuator of the spectrum analyzer automatically according to the reference level set on F2 (Ref Level (SPA)) of the function label.

• [F6] (return):

Returns to the upper-layer screen.

### The second page of the function label

• F1 (RBW):

Sets RBW of the spectrum analyzer.

• [F2] (RBW Digital/Normal):

Selects RBW type.

Normal: Implements RBW using the hardware band pass filter. The IF signal goes through the band pass filter, and is then fetched via the A/D converter.

Digital: Implements RBW by digital processing. The IF signal is fetched via the A/D converter, and then goes through the band pass filter by mathematical calculation. This provides RBW with better selectivity than the Normal type.

Refer to the Spectrum Analyzer Operation Manual for more information.

• [F3] (VBW):

Selects VBW type of the spectrum analyzer.

• F4 (VBW Manual/Auto):

Selects whether to set VBW regardless of RBW or to set it automatically in conjunction with RBW.

Manual: Sets VBW to any value regardless of RBW. This enables F3 (VBW).

Auto: Sets VBW value in conjunction with RBW. VBW cannot be set directly. This disables F3 (VBW). When RBW changes, VBW changes automatically accordingly.

### • F5 (VBW/RBW Ratio):

Sets the ratio used when the VBW setting mode is set to Auto.

### • [F6] (return):

Returns to the upper-layer screen.

### The third page of the function label

### • F1 (Sweep Time):

Sets the sweep time of the spectrum analyzer. Enter the sweep time value by using numeric keypad and then press Set to set the value in usec unit.

### • F2 (Sweep Time Manual/Auto):

Selects whether to set the sweep time regardless of RBW and the frequency span or to set it automatically in conjunction with them.

Manual: Sets the sweep time value regardless of RBW and the frequency span. This enables F1 (Sweep Time).

Auto: Sets the sweep time value in conjunction with RBW and the frequency span. The sweep time cannot be set directly. This disables  $\boxed{\text{F1}}$  (Sweep Time). When RBW or the frequency span changes, the sweep time changes automatically accordingly.

### • F3 (Span):

Sets the frequency span.

#### • F4 (Data Point):

Selects the total number of data for measured data acquisition. Select between the following:

501 points

1001 points

Measurement frequency resolution is determined by this setting and the frequency span.

#### • F5 (Detection):

Sets the level measurement method at each data point. Select one from the following:

Sample

Positive Peak

Negative Peak

Average or RMS (RMS is available only for Option 04 installed with RBW of Digital.)

Refer to the Spectrum Analyzer Operation Manual for more information on each measurement method.

#### • [F6] (return):

Returns to the upper-layer screen.

### 3.4.4 Setting storage mode

This section explains the averaging of the measured results.

- 1. Press F2 (Storage Mode) on the Occupied Bandwidth screen to display the function label for Storage Mode.
- 2. Press F2 (Average Count) to open the setting window.
- 3. Enter the average count by using (Entry keys), the rotary knob, or the numeric keypad.
- 4. Press Set.
- 5. On the Storage Mode menu, press F1 (Storage Mode).
- 6. Press ( ) (Entry keys) or turn the rotary knob to select "Average".
- 7. Press [Set].

After setting, another measurement is taken.

If the average count has changed when the storage mode is set to "Average," another measurement is taken after completing the setting. When no values are changed or when Cancel is selected, measurement is not taken again.

Refresh Interval: Sets the update timing for the average value display. After setting is changed, another measurement is taken.

- Every: Updates the display after each measurement.
- Once: Updates the display after measurements are taken up to the set average count.

The following modes can be selected for the storage mode:

Normal: Updates and displays the measured result after each measurement.

Average: Averages and displays the measured result after each measurement.

### 3.4.5 Calibration function (Calibration)

Refer to Section 3.2.16, "Calibration function (Calibration)" for more information on calibration.

### 3.4.6 Optimizing measurement range (Adjust Range)

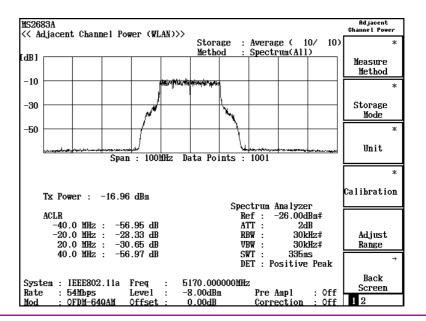
Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on measurement range optimization.

#### **Measuring Adjacent Channel Leakage Power** 3.5

The MX268x30A/MX860x30A can perform adjacent channel leakage power measurements according to the Technical Regulations Conformity Certification stipulated by TELEC (Telecom Engineering Center) with easy operations. Measurements can also be performed by using any parameter.

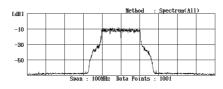
Press [F5] (Adjacent Channel Power) on the Setup Common Parameter screen to move to the adjacent channel leakage power measurement screen.

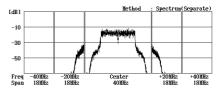
# **CAUTION**




Adjacent channel leakage power measurement is enabled when the target system is set to IEEE802.11a, HiSWANa or When IEEE802.11b or IEEE802.11g is set, adjacent channel leakage power measurement is disabled.

#### 3.5.1 **Explanation of measured results**


This section explains the measured results shown on the Adjacent Channel Power screen (adjacent channel leakage power). Before performing measurements, adjust the RF input level to optimize the level settings inside the measuring instrument. Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on how to adjust the RF input level.


Results of adjacent channel leakage power measurement



### (1) Waveform display

The spectrum waveform in the range up to the next adjacent channel. Two types of displays are available according to measurement method. Refer to Section 3.5.3, "Selecting measurement method" for the measurement method.





• Spectrum (All):

Displays the spectrum waveform of a wide range including the upper and lower next adjacent channels.

- Spectrum (Separate): Displays the spectrum waveform of each channel up to the upper and lower next adjacent channels.
- (2) Tx Power

Transmission signal power.

#### (3) ACLR

Measured value for the adjacent channel leakage power. The measured result at each offset frequency is displayed.

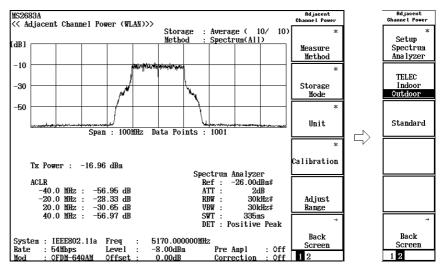
### (4) Marker: Offset

Frequency at the marker position on the waveform screen. The offset value from the center of the waveform screen (set frequency) is displayed.

### (5) Marker: Power

Power at the marker position on the waveform screen. Power integral for the frequency band of  $\pm 9$  MHz from the marker position.

### (6) Spectrum Analyzer


Setting values for the spectrum analyzer when measuring adjacent channel leakage power. The setting values cannot be changed when TELEC Standard (Indoor) or TELEC Standard (Outdoor) is selected as the measurement standard.

The values can be changed when Setup Spectrum Analyzer is selected. Refer to Section 3.5.5, "Measuring by using any measurement parameters" for more information.

### 3.5.2 Selecting measurement standard

The measurement method and standard for adjacent channel leakage power are stipulated in the Technical Regulations Conformity Certification by TELEC (Japan). The MX268x30A can easily perform measurements conforming to the stipulations.

1. Press (More) on the Adjacent Channel Power screen to display the second page of the function label. Select a function label page from those shown below.



- 2. Each soft key corresponds to the following standard.
  - [F1] (Setup Spectrum Analyzer):

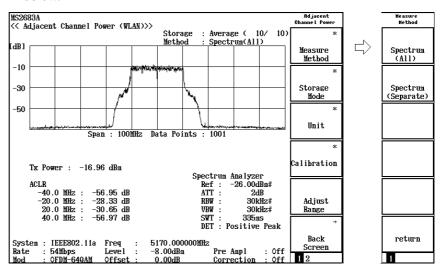
    Perform measurements by setting any measurement parameters.

    Refer to Section 3.5.5, "Measuring by using any measurement parameters" for more information.
  - ullet F2 (TELEC Indoor Outdoor):

Sets measurement parameters conforming to TELEC Technical Regulations Conformity Certification Test.

- Indoor: 5 GHz band low power data communicatio system.
- Outdoor: 5 GHz band radio access system.
- [F3] (Standard):

Sets spectrum analyzer parameters conforming to selected standards in  $\boxed{F2}$  (TELEC Indoor Outdoor).


• F6 (Back Screen):

Switches the screen from the current screen to the upper-layer screen by one rank.

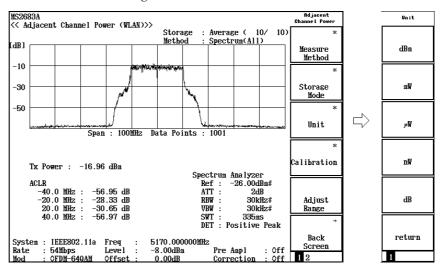
### 3.5.3 Selecting measurement method

Two measurement methods for adjacent channel leakage power are stipulated by TELEC.

1. Press F1 (Measure Method) on the Adjacent Channel Power screen. The function label changes. Select one from those shown below.



• F1 (Spectrum (All)):


Sweeps a wide range including the upper and lower next adjacent channels at once to obtain data, then calculates the leakage power of each channel. Measurement time becomes shorter because sweeping is performed only once.

- F2 (Spectrum (Separate)):
  Sets the center frequency and frequency span for each channel
  and performs measurements. Measurement time becomes longer
  because sweeping is performed five times.
- F6 (return):
  Returns to the previous function label display.

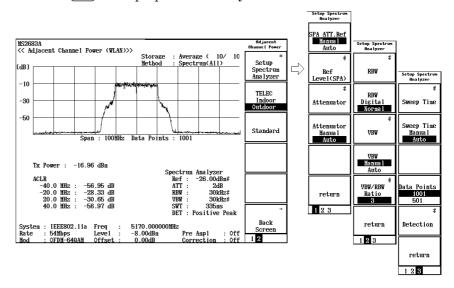
### 3.5.4 Changing measured result unit

The unit of the measured results for adjacent channel leakage power can be changed.

1. Press F3 (Unit) on the Adjacent Channel Power screen. The function label changes. Select one from those shown below.



- F1 (dBm):
  Displays measured results in dBm units.
- F2 (mW):
  Displays measured results in mW units.
- F3 (uW):
  Displays measured results in uW units.
- F4 (nW):
  Displays measured results in nW units.
- F5 (dB):
   Displays measured results in dB units. The relative value to the transmission signal is displayed.
- F6 (return):
  Returns to the previous function label display.


### 3.5.5 Measuring by using any measurement parameters

Adjacent channel leakage power is measured by the spectrum analyzer function. Therefore, the measured value for adjacent channel leakage power varies depending on the parameter values set for the spectrum analyzer.

The MX268x30A can perform measurements conforming to official standards as explained in Section 3.5.2, while also being capable of measurement by setting any measurement parameters for the spectrum analyzer.

### Selecting the measurement standard

- 1. Press (More) on the Adjacent Channel Power screen to display the second page of the function label.
- 2. Press F1 (Setup Spectrum Analyzer).



3. The measurement parameter settings are displayed across three function label pages.

#### The first page of the function label

• [F1] (SPA ATT Ref Manual/Auto):

Manual: Sets the reference level and the attenuator of the spectrum analyzer regardless of the set value for signal analysis.

Auto: Sets the reference level and the attenuator of the spectrum analyzer to the same value set for signal analysis.

• F2 (Ref Level (SPA)):
When F1 (SPA ATT Ref Manual/Auto) of the function label is set to
Manual, the value set here is set as the reference level for the
spectrum analyzer.

- F3 (Attenuator):
  - When [F4] (Attenuator Manual/Auto) of the function label is set to Manual, the value set here is set to the attenuator of the spectrum analyzer.
- F4 (Attenuator Manual/Auto):
  - Manual: Sets the attenuator of the spectrum analyzer regardless of the reference level set on F2 (Ref Level (SPA)) of the function label. Press F3 (Attenuator) to set the attenuator.
  - Auto: Sets the attenuator of the spectrum analyzer automatically according to the reference level set on F2 (Ref Level (SPA)) of the function label.
- F6 (return):
  Returns to the upper-layer screen.

### The second page of the function label

- F1 (RBW):
  - Sets RBW of the spectrum analyzer.
- [F2] (RBW Digital/Normal):

Selects RBW type.

- Normal: Implements RBW using the hardware band pass filter. The IF signal goes through the band pass filter, and is then fetched via the A/D converter.
- Digital: Implements RBW by digital processing. The IF signal is fetched via the A/D converter, and then goes through the band pass filter by mathematical calculation. This provides RBW with better selectivity than the Normal type.

Refer to the Spectrum Analyzer Operation Manual for more information.

• F3 (VBW):

Selects VBW type of the spectrum analyzer.

- F4 (VBW Manual/Auto):
  - Selects whether to set VBW regardless of RBW or to set it automatically in conjunction with RBW.
  - Manual: Sets VBW to any value regardless of RBW. This enables F3 (VBW).
  - Auto: Sets VBW value in conjunction with RBW. VBW cannot be set directly. This disables F3 (VBW). When RBW changes, VBW changes automatically accordingly.

### • F5 (VBW/RBW Ratio):

Sets the ratio used when the VBW setting mode is set to Auto.

### • F6 (return):

Returns to the upper-layer screen.

#### The third page of the function label

### • F1 (Sweep Time):

Sets the sweep time of the spectrum analyzer. Enter the sweep time value by using numeric keypad and then press Set to set the value in µsec unit.

### • F2 (Sweep Time Manual/Auto):

Selects whether to set the sweep time regardless of RBW and the frequency span or to set it automatically in conjunction with them.

Manual: Sets the sweep time value regardless of RBW and the frequency span. This enables F1 (Sweep Time).

Auto: Sets the sweep time value in conjunction with RBW and the frequency span. The sweep time cannot be set directly. This disables F1 (Sweep Time). When RBW or the frequency span changes, the sweep time changes automatically accordingly.

### • F4 (Data Point):

Selects the total number of data for measured data acquisition. Select between the following:

501 points

1001 points

Measurement frequency resolution is determined by this setting and the frequency span.

### • F5 (Detection):

Sets the level measurement method at each data point. Select one from the following:

Sample

Positive Peak

Negative Peak

Average or RMS (RMS is available only for Option 04 installed with RBW of Digital.)

Refer to the Spectrum Analyzer Operation Manual for more information on each measurement method.

#### • [F6] (return):

Returns to the upper-layer screen.

### 3.5.6 Setting storage mode

This section explains the averaging of the measured results.

- 1. Press [F2] (Storage Mode) on the Adjacent Channel Power screen to display the function label for Storage Mode.
- 2. Press F2 (Average Count) to open the setting window.
- 3. Enter the average count by using (Entry keys), the rotary knob, or the numeric keypad.
- 4. Press Set.
- 5. On the Storage Mode menu, press F1 (Storage Mode).
- 6. Press (\(\sigma\) (\(\sigma\) (Entry keys) or turn the rotary knob to select "Average".
- 7. Press Set.

After setting, another measurement is taken.

If the average count has changed when the storage mode is set to "Average," another measurement is taken after completing the setting. When no values are changed or when Cancel is selected, measurement is not taken again.

### [F3] (Refresh Interval):

Sets the interval to update the display of the average value.

After setting is changed, another measurement is taken.

- Every: Updates the display after each measurement.
- Once: Updates the display after measurements are taken up to the set average count.

The following modes can be selected for the storage mode:

Normal: Updates and displays the measured result after each measurement.

Average: Averages and displays the measured result after each measurement.

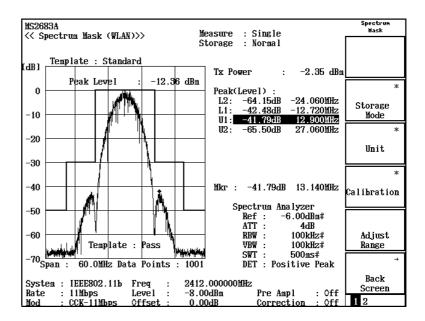
### 3.5.7 Calibration function (Calibration)

Refer to Section 3.2.16, "Calibration function (Calibration)" for more information on calibration.

### 3.5.8 Optimizing measurement range (Adjust Range)

Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on measurement range optimization.

# 3.6 Measuring Spectrum Mask

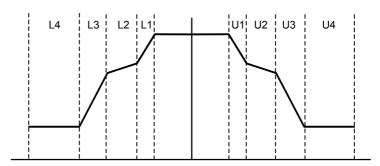

The MX268x30A/MX860x30A can perform measurements using methods conforming to IEEE802.11a, IEEE802.11b or IEEE802.11g via easy operations. Measurements can also be performed by using any parameter.

Press F6 (Spectrum Mask) on the Setup Common Parameter screen to move to the spectrum mask measurement screen.

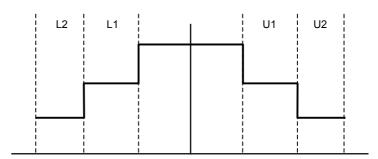
### 3.6.1 Explanation of measured results

This section explains the measured results shown on the Spectrum Mask screen. Before performing measurements, adjust the RF input level to optimize the level settings inside the measuring instrument. Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on how to adjust the RF input level.

Results of spectrum mask measurement




- Waveform display
   Measured waveform and the standard line of spectrum mask.
- (2) Tx Power
  Transmission signal power.


### (3) Peak (Margin)/Peak (Level)

Displays the level difference (Margin) between the standard line and measured value, and frequency at that point. Or, it displays the measured level value and frequency at that point. Pressing F4 (Display Data Type) on the second page of the function label switches between the two display types.

Symbols beginning with L or U in the leftmost row indicate standard line intervals. The relationship between the symbols and standard lines are shown in the figure below:



IEEE802.11a, HiSWANa, HiperLAN2, IEEE802.11g (ERP-OFDM) and IEEE802.11g (DSSS-OFDM) standard lines

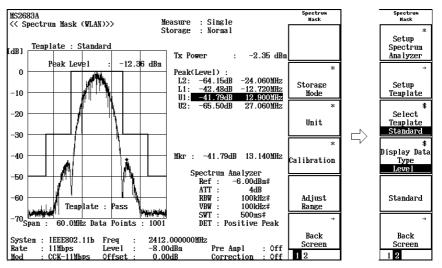


IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK) standard lines

### (4) Mkr

Frequency and measured value for the marker displayed on the waveform screen.

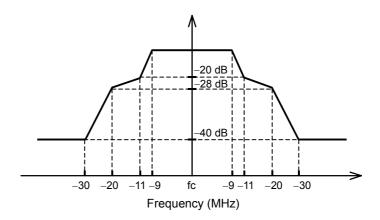
#### (5) Spectrum Analyzer


Setting values for the spectrum analyzer when measuring spectrum mask. Refer to Section 3.6.5, "Measuring by using any measurement parameters" for more information.

### 3.6.2 Selecting measurement standard

The measurement method and spectrum mask are stipulated in IEEE802.11a, IEEE802.11b and IEEE802.11g. The MX268x30A/MX860x30A can easily perform measurements conforming to the stipulated methods.

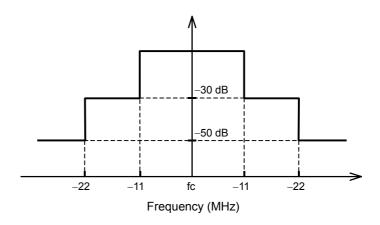
1. Press (More) on the Spectrum Mask screen to display the second page of the function label.


Then press [F3] (Select Template) to change the function label display to "Standard".



2. The spectrum mask corresponding to the currently set target system is selected.

Each spectrum mask and measurement setting of the spectrum analyzer are shown below:


Spectrum mask for IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) and IEEE802.11g (DSSS-OFDM)

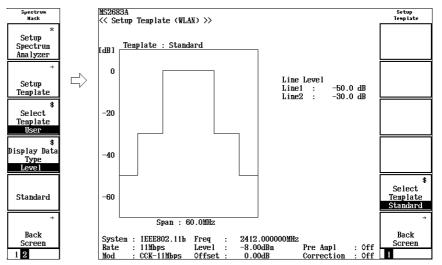


Spectrum analyzer settings for IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) and IEEE802.11g (DSSS-OFDM)

Span frequency: 80 MHz
RBW: 100 kHz
VBW: 30 kHz
Detection mode: Positive Peak

Spectrum mask for IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK)

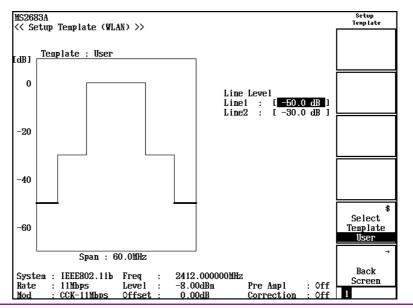



Spectrum analyzer settings for IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK)

Span frequency: 60 MHz
RBW: 100 kHz
VBW: 100 kHz
Detection mode: Positive Peak

### 3.6.3 Changing standard line of spectrum mask

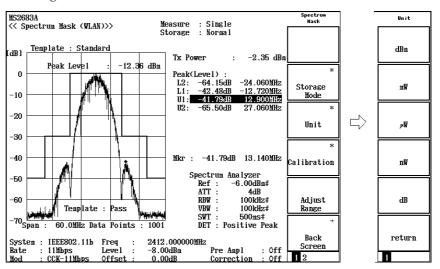
Spectrum mask can be changed by the user.


1. Press (More) on the Spectrum Mask screen to display the second page of the function label. Then press F2 (Setup Template) to move to the spectrum mask input screen.



- 2. Press F5 (Select Template) of the function label to change the function label display to "User".
- 3. Input spectrum mask based on IEEE802.11a, IEEE802.11b or IEEE802.11g spectrum mask. The offset frequency cannot be changed. Only the level can be changed.

Press ( ) (Entry keys) or turn the rotary knob to move the cursor to the level to be changed, and then press (Set).


4. Press (\sim \) (Entry keys) or the numeric keypad, or turn the rotary knob to change the level for spectrum mask. Press (Set to set the value.



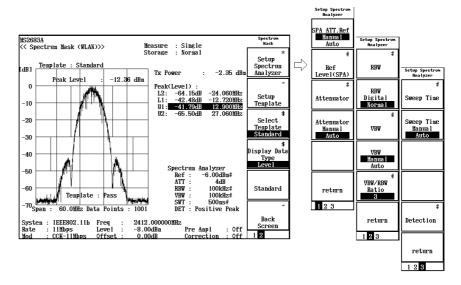
### 3.6.4 Changing measured result unit

The unit of the measured results for spectrum mask level can be changed.

1. Press F3 (Unit) on the Spectrum Mask screen. The function label changes. Select one from those shown below.



- F1 (dBm): Displays measured results in dBm units.
- F2 (mW):
  Displays measured results in mW units.
- F3 (uW):
  Displays measured results in uW units.
- F4 (nW):
  Displays measured results in nW units.
- F5 (dB):
  Displays measured results in dB units. The relative value to the transmission signal is displayed.
- F6 (return):
  Returns to the previous function label display.


### 3.6.5 Measuring by using any measurement parameters

Spectrum mask is measured by the spectrum analyzer function. Therefore, the measured value for spectrum mask varies depending on the parameter values set for the spectrum analyzer.

The MX268x30A/MX860x30A can perform measurements conforming to official standards as explained in Section 3.6.2, while also being capable of measurement by setting any measurement parameters for the spectrum analyzer.

### Selecting the measurement standard

- 1. Press (More) on the Spectrum Mask screen to display the second page of the function label.
- 2. Press F1 (Setup Spectrum Analyzer).



3. The measurement parameter settings are displayed across three function label pages.

### The first page of the function label

• F1 (SPA ATT Ref Manual/Auto):

Manual: Sets the reference level and the attenuator of the spectrum analyzer regardless of the set value for signal analysis.

Auto: Sets the reference level and the attenuator of the spectrum analyzer to the same value set for signal analysis.

• F2 (Ref Level (SPA)):
When F1 (SPA ATT Ref Manual/Auto) of the function label is set to
Manual, the value set here is set as the reference level for the
spectrum analyzer.

• F3 (Attenuator):

When [F4] (Attenuator Manual/Auto) of the function label is set to Manual, the value set here is set to the attenuator of the spectrum analyzer.

• F4 (Attenuator Manual/Auto):

Manual: Sets the attenuator of the spectrum analyzer regardless of the reference level set on F2 (Ref Level (SPA)) of the function label. Press F3 (Attenuator) to set the attenuator.

Auto: Sets the attenuator of the spectrum analyzer automatically according to the reference level set on F2 (Ref Level (SPA)) of the function label.

• F6 (return):

Returns to the upper-layer screen.

### The second page of the function label

• [F1] (RBW):

Sets RBW of the spectrum analyzer.

• [F2] (RBW Digital/Normal):

Selects RBW type.

Normal: Implements RBW using the hardware band pass filter. The IF signal goes through the band pass filter, and is then fetched via the A/D converter.

Digital: Implements RBW by digital processing. The IF signal is fetched via the A/D converter, and then goes through the band pass filter by mathematical calculation. This provides RBW with better selectivity than the Normal type.

Refer to the Spectrum Analyzer Operation Manual for more information.

• [F3] (VBW):

Selects VBW type of the spectrum analyzer.

• F4 (VBW Manual/Auto):

Selects whether to set VBW regardless of RBW or to set it automatically in conjunction with RBW.

Manual: Sets VBW to any value regardless of RBW. This enables F3 (VBW).

Auto: Sets VBW value in conjunction with RBW. VBW cannot be set directly. This disables F3 (VBW). When RBW changes, VBW changes automatically accordingly.

### • F5 (VBW/RBW Ratio):

Sets the ratio used when the VBW setting mode is set to Auto.

### • [F6] (return):

Returns to the upper-layer screen.

### The third page of the function label

### • F1 (Sweep Time):

Sets the sweep time of the spectrum analyzer. Enter the sweep time value by using numeric keypad and then press Set to set the value in µsec unit.

### • F2 (Sweep Time Manual/Auto):

Selects whether to set the sweep time regardless of RBW and the frequency span or to set it automatically in conjunction with them.

Manual: Sets the sweep time value regardless of RBW and the frequency span. This enables F1 (Sweep Time).

Auto: Sets the sweep time value in conjunction with RBW and the frequency span. The sweep time cannot be set directly. This disables F1 (Sweep Time). When RBW or the frequency span changes, the sweep time changes automatically accordingly.

### • F5 (Detection):

Sets the level measurement method at each data point. Select one from the following:

Sample

Positive Peak

Negative Peak

Average or RMS (RMS is available only for Option 04 installed with RBW of Digital.)

Refer to the Spectrum Analyzer Operation Manual for more information on each measurement method.

### • [F6] (return):

Returns to the upper-layer screen.

### 3.6.6 Setting storage mode

This section explains the averaging of the measured results.

- 1. Press F2 (Storage Mode) on the Spectrum Mask screen to display the function label for Storage Mode.
- 2. Press F2 (Average Count) to open the setting window.
- 3. Enter the average count by using (Entry keys), the rotary knob, or the numeric keypad.
- 4. Press Set.
- 5. On the Storage Mode menu, press F1 (Storage Mode).
- 6. Press ( ) (Entry keys) or turn the rotary knob to select "Average".
- 7. Press Set

After setting, another measurement is taken.

If the average count has changed when the storage mode is set to "Average," another measurement is taken after completing the setting. When no values are changed or when Cancel is selected, measurement is not taken again.

### F3 (Refresh Internal):

Sets the interval to update the display of the average value.

After setting is changed, another measurement is taken.

- Every: Updates the display after each measurement.
- Once: Updates the display after measurements are taken up to the set average count.

The following modes can be selected for the storage mode:

Normal: Updates and displays the measured result after each measurement.

Average: Averages and displays the measured result after each measurement.

# 3.6.7 Measuring by using the measurement parameters confirming to measurement standard

The MX268x30A can also perform measurements by using the measurement parameters conforming to the measurement standard.

- 1. Press (More) on the Spectrum Mask screen to display the function label for Storage Mode.
- 2. Press F5 (Standard).

### 3.6.8 Calibration function (Calibration)

Refer to 3.2.16, "Calibration function (Calibration)" for more information on calibration.

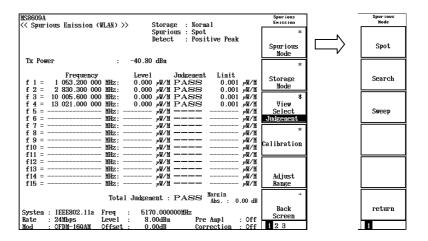
### 3.6.9 Optimizing measurement range (Adjust Range)

Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on measurement range optimization.

## 3.7 Measuring Spurious

The Wireless LAN software can perform measurements according to the Technical Regulations Conformity Certification stipulated by TELEC, etc., via simple operations. Measurements can also be performed using any parameter.

Press (More) in the Setup Common Parameter screen to display the second page. Then press F2 (Spurious Emission) to move to the measurement screen for spurious.


Adjust RF input level to optimize level setting inside the spectrum analyzer before measuring spurious. Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for adjusting RF input level.

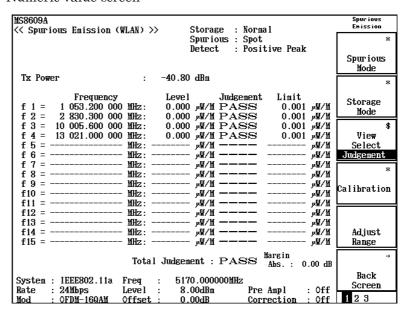
### 3.7.1 Measurement procedures

The following three methods of spurious measurement are available. Choose the suitable one for the purpose as they vary greatly.

- Spot: Measures spurious for specified frequency. Use this method when frequency at which spurious is generated can be predicted. This method skips sweeping and measures only the specified frequency, thus measurement time is shorter than other methods.
- Sweep: Sweeps within the specified frequency range and detects the
  maximum level spurious. Use this method when frequency at
  which spurious generated cannot be predicted. This method
  detects waves at Positive Peak, thus the measured results may
  be larger than actual level.
- Search: Sweeps within the specified frequency range as well as "Sweep" above, and searches the maximum level signal. In addition, performs zero-span by setting the signal frequency as the center, and Sample wave detection to measure accurate signal level. Spurious level where frequency cannot be determined can be measured accurately. Measurement time is longer than other methods.

Press F1 (Spurious Mode) in the Spurious Emission screen to switch the measurement method. The function label contents change to measurement method. Select one from here.




### 3.7.2 Measured results

The following two types of measured results display are available.

- Numeric value screen: Displays list of frequency and level for measured spurious.
- Waveform screen: Displays waveform for sweep range and measured results for spurious. Available for Sweep and Search measurements.

Refer to Section 3.7.5, "Viewing waveform" for switching between numeric value and waveform screens.

### 1. Numeric value screen



#### (1) Tx Power

Signal level for the frequency set in "Freq" at the bottom of the screen.

### (2) Frequency

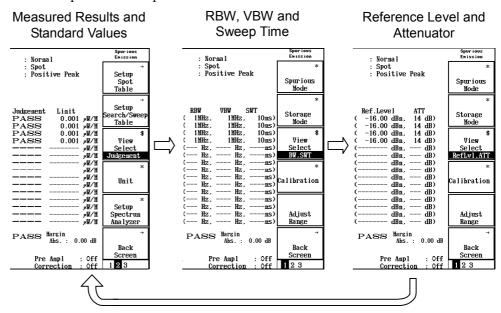
Spurious measurement frequency. Refer to Section 3.7.6, "Defining frequency table (Spot measurement)" or 3.7.7, "Defining frequency table (Sweep and Search measurements)" for settings.

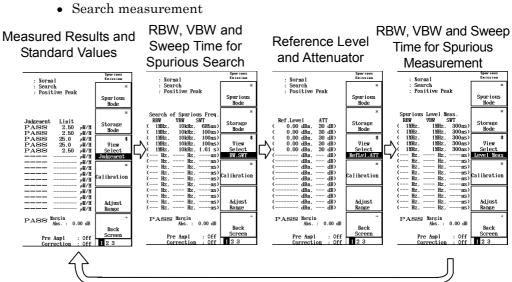
#### (3) Level

Spurious level at frequency specified in (2) above.

### (4) Judgment and Limit

Judgment result of spurious level measured in (3) above to standard value, and standard value for pass/fail judgment of spurious. Display contents of this part can be changed from F3 (View Select) of function label.

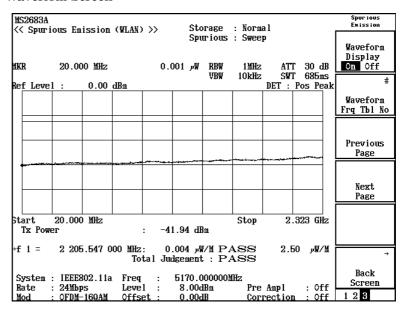

### (5) Total Judgment


Judgment result for all frequencies.

#### (6) [F3] (View Select)

Results and conditions for spurious measurement cannot be displayed in one screen. Pressing this key toggles results and conditions for measurement in the order shown below.

#### • Spot and Sweep measurements






### (7) Margin

Displays a margin value, which can be taken into consideration for pass/fail judgment of a spurious level standard value. Refer to Section 3.7.6, "Defining frequency table (Spot measurement)" or 3.7.7, "Defining frequency table (Sweep and Search measurements)" for settings.

#### 2. Waveform Screen



#### (1) MKR

Frequency and level at marker point (red diamond mark) in the waveform screen. Move the marker using \( \subseteq \) and \( \subseteq \) (Entry keys) or rotary knob.

#### (2) RBW, VBW, ATT, SWT, DET

Setting value for spectrum analyzer when measuring spurious.

RBW: Resolution bandwidth VBW: Video bandwidth ATT: Input attenuator

SWT: Sweep time

DET: Wave detection mode

Refer to Section 3.7.7, "Defining frequency table (Sweep and Search measurements)" for changing the above values.

#### (3) Ref Level

Level at the top of the waveform graph. The vertical axis of the waveform graph is 10 dB/div.

### (4) Start, Stop

Sweep range when measuring spurious.

Start: Sweep start frequency

Stop: Sweep stop frequency

Refer to Section 3.7.7, "Defining frequency table (Sweep and Search measurements)" for changing the above values.

#### (5) Tx Power

Signal level at the frequency set in "Freq" at the bottom of the screen.

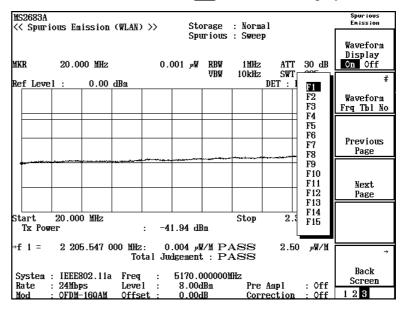
#### $(6) \rightarrow$

Spurious measurement results within displayed waveform.

No. in Frequency Table Spurious Level Standard Value

→f 1 = 2 205.547 000 MHz: 0.004 \psi \mathred{M} \psi \mathred{PASS} 2.50 \psi \mathred{M}/\mathred{M}

Spurious Frequency Judgment Result with Standard Value


#### (7) Total Judgment

Judgment result for all frequencies.

### (8) F2 (Waveform Frq Tbl No):

Specify the frequency table with this key. Pressing this key opens a list of frequency table No's. Select a number using \( \subseteq \) and \( \subseteq \) (Entry keys) or rotary knob, then press (Set).

This item cannot be set when [F1] (Waveform Display) is set to off.



### (9) F3 (Previous Page):

Pressing this key decreases the frequency table No. for waveform display by one.

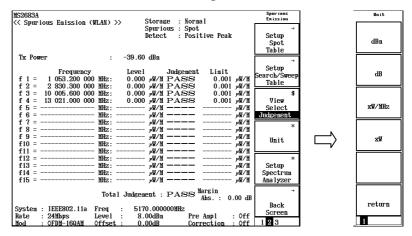
This item cannot be set when [F1] (Waveform Display) is set to off.

### (10) [F4] (Next Page):

Pressing this key increases the frequency table No. for waveform display by one.

This item cannot be set when F1 (Waveform Display) is set to off.

### (11) F6 (Back Screen):


Switches the screen from the current screen to the upper-layer screen by one rank.

### 3.7.3 Changing measured results unit

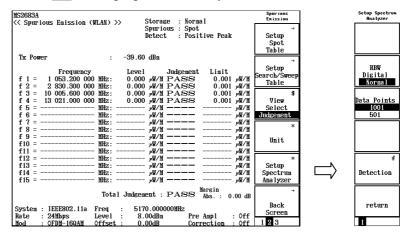
The measured results unit for spurious can be changed.

1. Press (More) on the Spurious Emission screen to display the second page of the function label. Press F4 (Unit) on the second page of function label.

The function label contents change. Select one from here.



- F1 (dBm): Displays in dBm units.
- F2 (dB):
  Displays relative value to transmission signal in dB units.
- F3 (xW/MHz): Displays power per 1 MHz bandwidth in W units.
- F4 (xW):
  Displays in W units.
- F6 (return):
  Returns to the previous function label display.


### 3.7.4 Measuring by using any measurement parameters

Spurious Emission is measured by the spectrum analyzer function. Therefore, the measured value for spurious emission varies depending on the parameter values set for the spectrum analyzer.

The MX268x30A/MX860x30A can perform measurements conforming to official standards as explained in Section 3.7.8, while also being capable of measurement by setting any measurement parameters for the spectrum analyzer.

#### Selecting the measurement standard

- 1. Press (More) on the Spurious Emission screen to display the second page of the function label.
- 2. Press F5 (Setup Spectrum Analyzer).



• F2 (RBW Digital/Normal):

Selects RBW type.

Normal: Implements RBW using the hardware band pass filter. The IF signal goes through the band pass filter, and is then fetched via the A/D converter.

Digital: Implements RBW by digital processing. The IF signal is fetched via the A/D converter, and then goes through the band pass filter by mathematical calculation. This provides RBW with better selectivity than the Normal type.

Refer to the Spectrum Analyzer Operation Manual for more information.

• F3 (Data Points):

Selects the total number of data for measured data acquisition. Select between the following:

501 points

1001 points

Measurement frequency resolution is determined by this setting and the frequency span.

• F5 (Detection):

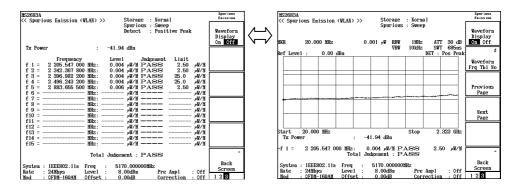
Sets the level measurement method at each data point. Select one from the following:

Sample

Positive Peak

Negative Peak

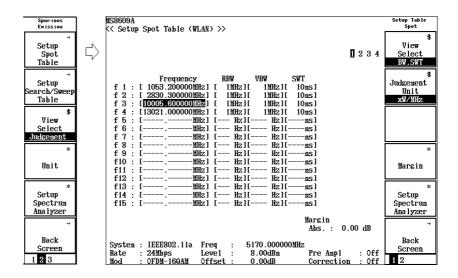
Average


• F6 (return):

Returns to the upper-layer screen.

### 3.7.5 Viewing waveform

Sweep waveform can be displayed during Sweep or Search measurement. This enables checking status except measured spurious.


Press F1 (Waveform Display) on the third page of the function label on the Spurious Emission screen to switch between the numeric value screen and the waveform screen.

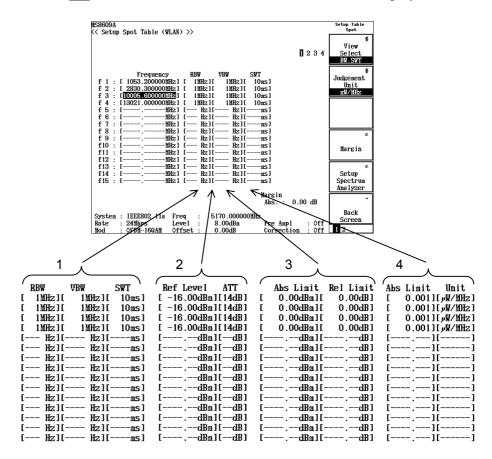


### 3.7.6 Defining frequency table (Spot measurement)

Frequency for spurious measurement must be specified for Spot measurement. Frequency range for spurious measurement must be specified for Sweep and Search measurements.

Press F1 (Setup Spot Table) on the second page of the function label on the Spurious Emission screen to move to the frequency table definition screen.




Up to 15 frequency tables can be defined. Inverted display indicates imputable parts. Move the cursor using and (Entry keys) or rotary knob.

Set the following items for definition of each frequency table.

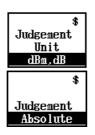
- Measurement frequency (Frequency)
- Resolution bandwidth for spectrum analyzer (RBW)
- Video bandwidth for spectrum analyzer (VBW)
- Sweep time for spectrum analyzer (SWT)
- Reference level for spectrum analyzer (Ref Level)
- Attenuator for spectrum analyzer (ATT)
- Absolute standard value for pass/fail judgment in dBm units (Abs Limit)
- Relative standard value for pass/fail judgment in dB units (Rel Limit)
- Absolute standard value for pass/fail judgment in W units (Abs Limit)
- Absolute standard value for pass/fail judgment in auxiliary unit of W (Unit)

All setting items cannot be displayed within one screen. They are displayed by switching sequentially except for frequency.

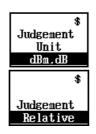
Press F1 (View Select) on the function label to switch display.



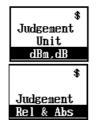
Absolute and relative standard values are used as pass/fail judgment criteria. Absolute standard values can be set in dBm and W. Select one to be used from these standard values in  $\boxed{F2}$  (Judgment Unit) and  $\boxed{F3}$  (Judgment) in the function label.




Performs pass/fail judgment with absolute standard values in W units.


The result is MHz-band converted for display.




Performs pass/fail judgment with absolute standard values in W units.



Performs pass/fail judgment with absolute standard values in dBm units.



Performs pass/fail judgment with relative standard values in dB units.



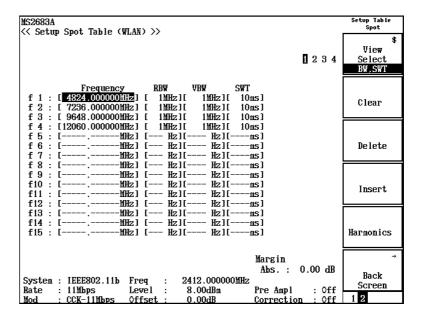
Performs pass/fail judgment with both absolute standard values in dBm units and relative standard values in dB units.

Press [F4] (Margin) on the function label to add a margin value for the pass/fail judgment standard in dB units.

- F1 (Absolute (xW, xW/MHz))

  Sets a margin value of the absolute standard value in W units or W units per MHz (MHz-band conversion).
- F2 (Absolute (dBm))

Sets a margin value of the absolute standard value in dBm units.


• F3 (Relative (dB))

Sets a margin value of the relative standard value in dB units.

- · Setting a margin value
- 1. Press F1 (Absolute (xW, xW/MHz)), F2 (Absolute (dBm)) or F3 (Relative (dB)) to open the setting window.
- 2. Press (\(\sigma\) (Entry keys), turn the rotary knob, or use the numeric keypad to input the margin value to be set.
- 3. Press Set.

Press F5 (Setup Spectrum Analyzer) on the function label to enable measurement using user-defined parameters. Refer to 3.7.9, "Measuring by using any measurement parameters (Setup Table)" for details.

Use keys on second page of the function label for additions or deletions on existing frequency table.



• [F2] (Clear):

Deletes all frequency tables

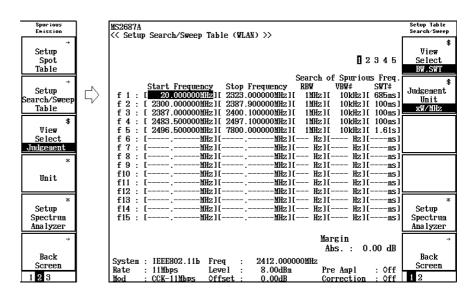
• F3 (Delete):

Deletes inverted line

• [F4] (Insert):

Adds a new line above the inverted line

• F5 (Harmonics):


Sets frequency that is the multiplier of the set frequency

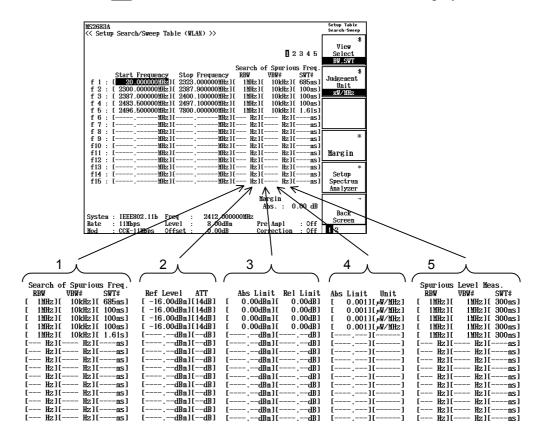
• F6 (Back Screen):

Switches the screen from the current screen to the upper-layer screen by one rank.

## 3.7.7 Defining frequency table (Sweep and Search measurements)

Press F2 (Setup Search/Sweep Table) on the second page of the function label on the Spurious Emission screen to move to the frequency table definition screen.




Up to 15 frequency tables can be defined. Inverted display indicates imputable parts. Move the cursor using \( \subseteq \) and \( \subseteq \) (Entry keys) or rotary knob.

Set the following items for definition of each frequency table.

- Sweep start frequency (Start Frequency)
- Sweep stop frequency (Stop Frequency)
- Resolution bandwidth for spectrum analyzer during spurious search (RBW)
- Video bandwidth for spectrum analyzer during spurious search (VBW)
- Sweep time for spectrum analyzer during spurious search (SWT)
- Reference level for spectrum analyzer (Ref Level)
- Attenuator for spectrum analyzer (ATT)
- Absolute standard value for pass/fail judgment in dBm units (Abs Limit)
- Relative standard value for pass/fail judgment in dB units (Rel Limit)
- Absolute standard value for pass/fail judgment in W units (Abs Limit)
- Absolute standard value for pass/fail judgment in auxiliary unit of W (Unit)
- Resolution bandwidth for spectrum analyzer during spurious measurement (RBW)
- Video bandwidth for spectrum analyzer during spurious measurement (VBW)
- Sweep time for spectrum analyzer during spurious measurement (SWT)

All setting items cannot be displayed within one screen. They are displayed by switching sequentially except for frequency.

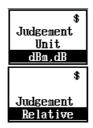
Press F1 (View Select) on the function label to switch display.



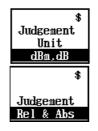
Absolute and relative standard values are used as pass/fail judgment criteria. Absolute standard value can be set in dBm and W. Select one to be used from these standard values in F2 (Judgment Unit) and F3 (Judgment) in the function label.



Performs pass/fail judgment with absolute standard values in W units.


The result is MHz-band converted for display.




Performs pass/fail judgment with absolute standard values in W units.



Performs pass/fail judgment with absolute standard values in dBm units.



Performs pass/fail judgment with relative standard values in dB units.



Performs pass/fail judgment with both absolute standard values in dBm units and relative standard values in dB units.

Press F4 (Margin) on the function label to add a margin value for the pass/fail judgment standard in dB units.

- F1 (Absolute (xW, xW/MHz))
  - Sets a margin value of the absolute standard value in W units or W units per MHz (MHz-band conversion).
- F2 (Absolute (dBm))
  - Sets a margin value of the absolute standard value in dBm units.
- F3 (Relative (dB))

Sets a margin value of the relative standard value in dB units.

- · Setting a margin value
- 1. Press F1 (Absolute (xW, xW/MHz)), F2 (Absolute (dBm)) or F3 (Relative (dB)) to open the setting window.
- 2. Press (Contry keys), turn the rotary knob, or use the numeric keypad to input the margin value to be set.
- 3. Press Set

Press F5 (Setup Spectrum Analyzer) on the function label to enable measurement using user-defined parameters. Refer to 3.7.9, "Measuring by using any measurement parameters (Setup Table)" for details.

#### Notes on settings

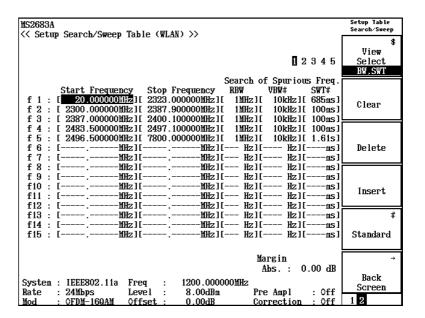
- Set sweep frequency bandwidth (Sweep stop frequency Sweep start frequency) to 10 GHz or lower.
- Sweep frequency of analyzer contains frequency uncertainty. MS268xA/MS860xA series analyzers employ start-lock sweep method. This method locks frequency at sweep start time, and then varies voltage controller oscillator frequency by using ramp voltage to perform sweep. Thus while sweep start frequency is accurate, the sweep stop frequency contains uncertainty. Normally, the uncertainty is defined by span accuracy.

Set sweep stop frequency in view of set span accuracy.

For example, when measuring spurious for a range from 100 MHz to 1000 MHz while span accuracy is set to  $\pm 1\%$ , uncertainty of  $\pm 0.01 \times (1 \text{ GHz} - 100 \text{ MHz}) = \pm 9 \text{ MHz}$  appears at sweep stop frequency. The actual sweep frequency range should be set to 1000 MHz + 9 MHz = 1009 MHz.

From the above-mentioned reason, when the setting range of SPAN is made large and Search measurement is performed, a big frequency error is produced. Therefore, the processing (improvement in frequency accuracy) which narrows SPAN focusing on the frequency for which it searched again, and performs Search enters.

In case of carrying out especially near the Career by Search measurement, by the uncertainty of frequency is the cause, it may not be measured correctly. When searching the 1st frequency, the career signal of the outside of the set-up range may be caught.


When such, please measure by making SPAN as narrow as possible. In addition, it is effective, if the frequency which Spurious generates beforehand can be predicted and Spot measurement will be performed. Compared with other measuring methods, measurement time becomes short.

- Wave detection mode is set to Positive Peak in Spot and Sweep measurements. Wave detection mode during spurious search is set to Positive Peak while it is set to Sample at final level measurement in Search measurement.
- Internal LO signal leakage called as zero-beat when analyzer frequency is 0 Hz. The zero-beat is misidentified as spurious when relationship between sweep start frequency (fs) and RBW during Sweep and Search measurements are as shown below:

fs<10RBW (rule of thumb)

Decrease RBW value in this event.

Use keys in the second page of the function label for additions or deletions on existing frequency table.



• [F2] (Clear):

Deletes all frequency tables

• [F3] (Delete):

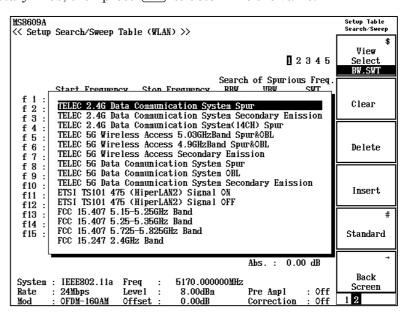
Deletes inverted line

• [F4] (Insert):

Adds a new line above the inverted line

• [F5] (Standard):

Sets frequency that is the multiplier of the set frequency


• F6 (Back Screen):

Switches the screen from the current screen to the upper-layer screen by one rank.

## 3.7.8 Measuring using conformance with official standards

Conditions and standards for spurious measurement are stipulated by TELEC and FCC. This section describes measurement parameter settings that conform to these official standards.

- Press (More) in the Spurious Emission screen to display the second page.
- Pressing F2 (Setup Search/Sweep Table) opens the frequency table definition screen. Then press (More) to display the second page.
- Pressing F5 (Standard) opens a list of official standards.
- Select official standards using \( \square \) and \( \square \) (Entry keys) or the rotary knob, then press \( \square \) to determine the value.



#### standards corresponding to each item

Official standards referred to by items displayed on the screen are as follows:

TELEC 2.4 G Data Communication System Spur

ightarrow TELEC 2.4 GHz band wide band low power data communication system

Level of spurious emission

TELEC 2.4 G Data Communication System Secondary Emission

ightarrow TELEC 2.4 GHz band wide band low power data communication system

Level of secondary emission

- TELEC 2.4 G Data Communication System(14CH) Spur
  - ightarrow TELEC 2.4 GHz band low power data communication system Level of spurious emission
- TELEC 5 G Wireless Access 5.03 GHz Band Spur & OBL
  - $\rightarrow$  5.03 thru 5.06 GHz band of TELEC 5 GHz band radio access system
    - Level of spurious emission and out-of-band leakage power
- TELEC 5 G Wireless Access 4.9 GHz Band Spur & OBL
  - ightarrow 4.9 thru 5 GHz band of TELEC 5 GHz band radio access system Level of spurious emission and out-of-band leakage power
- TELEC 5 G Wireless Access Secondary Emission
  - → TELEC 5 GHz band radio access system Level of secondary emission
- TELEC 5 G Data Communication System Spur
  - ightarrow TELEC 5 GHz band low power data communication system Level of spurious emission
- TELEC 5 G Data Communication System OBL
  - → TELEC 5 GHz band low power data communication system Out-of-band radiation power
- TELEC 5 G Data Communication System Secondary Emission
  - ightarrow TELEC 5 GHz band low power data communication system Level of secondary emission
- ETSI TS 101 475 (HiperLan2) Signal ON
  - $\rightarrow$  ETSI TS 101 475 v1.3.1 5.8.3 Unwanted RF radiation Active Transmit
- ETSI TS 101 475 (HiperLan2) Signal OFF
  - $\rightarrow$  ETSI TS 101 475 v1.3.1 5.8.3 Unwanted RF radiation All the other mode
- FCC 15.407 5.15-5.25 GHz Band
  - → CFR Title47, Chapter1, Part15, Sec15.407, Paragraph (b) (1)
- FCC 15.407 5.25-5.35 GHz Band
  - → CFR Title47, Chapter1, Part15, Sec15.407, Paragraph (b) (2)
- FCC 15.407 5.725-5.825 GHz Band
  - → CFR Title47, Chapter1, Part15, Sec15.407, Paragraph (b) (3)
- FCC 15.247 2.4 GHz Band
  - → CFR Title47, Chapter1, Part15, Sec15.247, Paragraph (c)

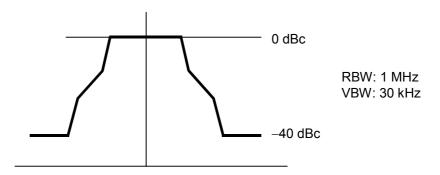
### Equivalent isotope-radiated power

In the following standards, equivalent isotope-radiated power is used for spurious measurement definition:

- TELEC 5 G Wireless Access 5.03 GHz Band Spur & OBL
- TELEC 5 G Data Comminucation System OBL
- FCC 15.407 5.15-5.25 GHz Band
- FCC 15.407 5.25-5.35 GHz Band
- FCC 15.407 5.725-5.825 GHz Band

Equivalent isotope-radiated power (Poa) is calculated by using the following formula:

$$Poa = Pa + Gt + Lf$$


Pa: Measured value of analyzer Gt: Absolute gain for aerial wire

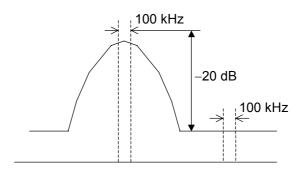
Lf: Loss from cable, etc.

Set the sum of Gt and Lf values above in the correction table on the analyzer to perform measurement. Refer to Operation Manual of the MS268xA Spectrum Analyzer or MS860xA Digital Mobile Radio Transmitter Tester for correction table.

## Notes on ETSI TS 101 475 (HiperLan2) Signal ON

In the ETSI standard, unwanted radiation during signal output is stipulated to follow the spectrum mask. The specification for the spectrum mask is as shown in the figure below:




According to this specification, unwanted radiation should be measured in 1 MHz bandwidth, and be 40 dB or less compared to the 1 MHz bandwidth power of the signal.

The 1 MHz bandwidth power of the signal is not directly measured by the MX268x30A/MX860x30A, but rather the channel power is measured. Therefore, instead of -40 dB, the specification value is -52.2 dB, calculated by subtracting 12.2 dB (10 log [16.6]), which is the ratio of 1 MHz to the occupied frequency bandwidth (16.6 MHz).

Spurious is not measured within a range of "±30 MHz of the setting frequency", since signals exist in this range.

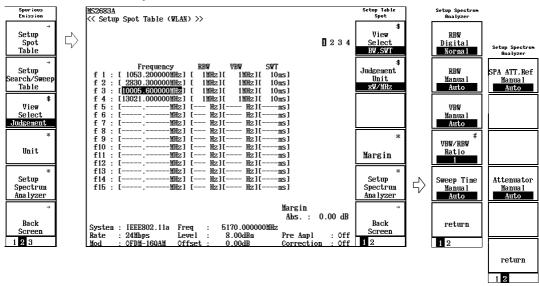
#### Notes on FCC 15.247 2.4 GHz Band

In the FCC standard, 100 kHz bandwidth power in bands other than 2400 MHz thru 2438.5 MHz band should be 20 dB less than 100 kHz bandwidth power that includes the maximum band level.



The 100 kHz bandwidth power of the signal in the band is not directly measured by the MX268x30A/MX860x30A, but rather the channel power is measured. Therefore, instead of -20 dB, the specification value is -43 dB, calculated by subtracting 23 dB, which is the ratio of the channel power to the 100 kHz bandwidth power in the center of the signal band.

Although unwanted radiation in the band stipulated in Sec 15.205, Paragraph (a) is also defined in the FCC standard, the MX268x30A/ MX860x30A does not support such radiation since it is defined by electric field intensity.


## 3.7.9 Measuring by using any measurement parameters (Setup Table)

Spurious emission is measured by the spectrum analyzer function. Therefore, the measured value for spurious emission varies depending on the parameter values set for the spectrum analyzer.

The MX268x30A/MX860x30A can perform measurements conforming to official standards as explained in Section 3.7.8, while also being capable of measurement by setting any measurement parameters for the spectrum analyzer.

## Selecting the measurement standard

- 1. Press (More) on the Spurious Emission screen to display the second page of the function label.
- 2. Press F1 (Setup Spot Table), then press F5 (Setup Spectrum Analyzer).



3. The measurement parameter settings are displayed across two function label pages.

## The first page of the function label

• F1 (RBW Digital/Normal):

Selects RBW type.

Normal: Implements RBW using the hardware band pass filter. The IF signal goes through the band pass filter, and is then fetched via the A/D converter.

Digital: Implements RBW by digital processing. The IF signal is fetched via the A/D converter, and then goes through the band pass filter by mathematical calculation. This provides RBW with better selectivity than the Normal type.

Refer to the Spectrum Analyzer Operation Manual for more information.

## • F2 (RBW Manual/Auto):

Selects whether to set RBW regardless of VBW or to set it automatically in conjunction with VBW.

Manual: Sets RBW to any value regardless of VBW.

Auto: Sets RBW value in conjunction with VBW. RBW cannot be set directly. When VBW changes, RBW changes automatically accordingly.

## • F3 (VBW Manual/Auto):

Selects whether to set VBW regardless of RBW or to set it automatically in conjunction with RBW.

Manual: Sets VBW to any value regardless of RBW.

Auto: Sets VBW value in conjunction with RBW. VBW cannot be set directly. When RBW changes, VBW changes automatically accordingly.

## • F4 (VBW/RBW Ratio):

Sets the ratio used when the VBW setting mode is set to Auto.

## • F5 (Sweep Time Manual/Auto):

Selects whether to set the sweep time regardless of RBW and the frequency span or to set it automatically in conjunction with them.

Manual: Sets the sweep time value regardless of RBW and the frequency span.

Auto: Sets the sweep time value in conjunction with RBW and the frequency span. The sweep time cannot be set directly. When RBW or the frequency span changes, the sweep time changes automatically accordingly.

### • [F6] (return):

Returns to the upper-layer screen.

## The second page of the function label

### • F1 (SPA ATT Ref Manual/Auto):

Manual: Sets the reference level and the attenuator of the spectrum analyzer regardless of the set value for signal analysis.

Auto: Sets the reference level and the attenuator of the spectrum analyzer to the same value set for signal analysis.

• F4 (Attenuator Manual/Auto):

Manual: Sets the attenuator of the spectrum analyzer regardless of the set reference level.

Auto: Sets the attenuator of the spectrum analyzer automatically according to the set reference level.

• F6 (return):
Returns to the upper-layer screen.

## 3.7.10 Setting storage mode

This section explains how to set the averaging process for measured results.

- · Setting averaging process
- 1. Press F2 (Storage Mode) on the Spurious Emission screen to display the Storage Mode function labels.
- 2. Press F2 (Average Count) to open the setting window.
- 3. Press (Entry keys), turn the rotary knob or use the ten-key pad to input the average count.
- 4. Press Set.
- 5. On the Storage Mode menu, press F1 (Storage Mode).
- 6. Press ( ) (Entry keys) or turn the rotary knob to select "Average."
- 7. Press [Set].

After setting, another measurement is taken.

If the average count is changed when the storage mode is set to "Average," another measurement is taken after completing the setting. When no values are changed or when Cancel is selected, measurement is not taken again.

Refresh Interval: Sets the update timing for the average value display. After setting is changed, another measurement is taken.

- Every: Updates the display after every measurement.
- Once: Updates the display after measurements are taken up to the set average count.

In addition to Average, the following modes can be selected for the storage mode:

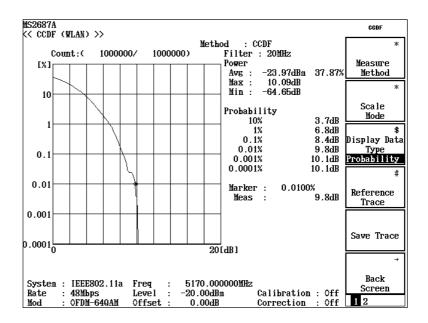
- Normal: Updates and displays the measured result after every measurement.
- Average: Averages and displays the measured result after each measurement.

# 3.7.11 Calibration function (Calibration)

Refer to Section 3.2.16, "Calibration function (Calibration)" for more information on calibration.

## 3.7.12 Optimizing measurement range (Adjust Range)

Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on measurement range optimization.


# 3.8 Measuring CCDF

Press (more) in the Setup Common Parameter screen to display the second page of the function label. Then press F1 (CCDF) to move to the measurement screen for CCDF.

This section describes the measured results and setting parameter related to the CCDF (Complementary Cumulative Distribution Function) screen.

# 3.8.1 Explanation of measured results

The following display appears when CCDF is selected for Measure Method.



#### Method:

Displays the measurement method selected for Measure Method. Refer to Section 3.8.2, "Selecting measurement method" for details on setting.

#### Waveform:

Displays the cumulative distribution of the average power band-limited by Filter and the instantaneous power. The horizontal axis indicates the difference between the average value and instantaneous power; the vertical axis indicates distribution.

Refer to Section 3.8.3, "Setting display format" for details on setting.

#### Count:

Displays the measurement point as count currently being measured/total count.

#### Filter:

Displays the band of Filter used for analysis. Refer to Section 3.8.4, "Setting for measurement" for details on setting.

#### Power:

Displays the relative values of Average Power, Maximum Power, and Minimum Power of the measurement point. It also displays the cumulative ratio of Average Power (unit: percent).

## Distribution, Probability:

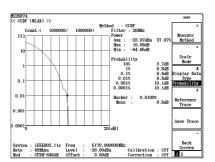
Displays the cumulative distribution of which above deviation at the grid. Refer to Section 3.8.3, "Setting display format" for details on setting.

### Marker:

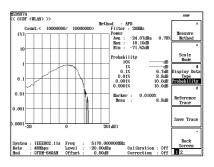
Displays the cumulative distribution of which above deviation at the marker.

Refer to Section 3.8.3, "Setting display format" for details on setting.

#### Delta Marker:


Displays the difference between the data saved in Reference Trace and the waveform being measured. Refer to Section 3.8.3, "Setting display format" for details on saving/displaying Reference Trace.

## 3.8.2 Selecting measurement method


This section describes how to select the Measurement Method. The description advances assuming that the first page of function label is being displayed on the CCDF screen.

- 1. Press F1 (Measure Method) to display the function labels shown below that allows you to select the Measurement Method.
- F1 (CCDF): Measures and displays CCDF (Complementary Cumulative Distribution Function). In this measurement, the cumulative distribution of the deviation of average power and instantaneous power is to be measured and displayed.
- F2 (APD): Measures and displays APD (Amplitude Probability Density). In this measurement, the deviation of average power and instantaneous power.
- F6 (return): Returns to the previous function label.

When Measuring Method is changed, re-measurement is to be carried out.



**Measure Method: CCDF** 



**Measure Method: APD** 

## 3.8.3 Setting display format

This section describes the Display Format of the measured results. The description advances assuming that the first page of function label is being displayed on the CCDF screen.

- · Selecting Trace Format
- 1. Press F2 (Scale Mode) to display the function label.
- 2. Press F1 (Trace Format) to display the setting window.
- 3. Select "Trace Format" using ( ) (Entry keys) or the rotary knob.
- 4. Press Set

The following modes are selectable for Trace Format:

- Positive: Displays the distribution of which above Average Power
- Negative: Displays the distribution of which below Average Power
- Positive & Negative: Displays all distribution

This function is available only when APD is set for Measure Method.

- · Selecting Horizontal Scale
- 1. Press F2 (Scale Mode) to display the function label.
- 2. Press F2 (Horizontal Scale) to display the function labels shown below that allows you to select Scale.
- F1 (2 dB): Sets the maximum value to 2 dB
- F2 (5 dB): Sets the maximum value to 5 dB
- F3 (10 dB): Sets the maximum value to 10 dB
- [F4] (20 dB): Sets the maximum value to 20 dB
- [F5] (50 dB): Sets the maximum value to 50 dB
- F6 (return): Returns to the previous function label.

| • | Selecting | Display | Data | Type |
|---|-----------|---------|------|------|
|---|-----------|---------|------|------|

1. Press [F3] (Display Data Type) to toggle between Probability and Distribution.

Display Data Type is a function to display the value of measured waveform of which the grid locates on either vertical axis or horizontal axis. The following modes are selectable:

- Probability: Displays the distribution of measured waveform at the specified probability (at the grid on the vertical axis). The marker moves along the vertical axis.
- Distribution: Displays the probability of measured waveform at the specified distribution (at the grid on the horizontal axis). The marker moves along the horizontal axis.

### · Saving the measured waveform

- 1. Press F5 (Save Trace).
- 2. When the confirmation widow appears, select "Yes" and press Set to confirm.

This function saves only selected waveform for Measure Method.

### · Selecting "Reference Trace"

- 1. Press F4 (Reference Trace) to display the setting window.
- 2. Select "Reference Trace" by using (Entry keys) or the rotary knob.
- 3 Press [Set]

When Measure Method is changed and then the waveform is saved, the previous waveform data does not remain.

Measured waveform and Gauss distribution saved by selecting "Reference Trace" are available to be displayed simultaneously.

- Off: Displays waveform currently being measured
- Save Trace: Displays waveforms both currently being measured and being saved
- Gaussian Trace: Displays waveform both currently being measured and gauss distribution
- Save & Gaussian: Displays waveforms both currently being measured and being saved, and gauss distribution

#### Setting for me 3.8.4

| easure                               | ment                                                                                                                                       |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| This sec                             | ction describes the settings required for the CCDF measurement                                                                             |
| The des                              | cription advances assuming that the second page of function label                                                                          |
| is being                             | displayed on the CCDF screen.                                                                                                              |
| <ol> <li>Pre</li> <li>Sel</li> </ol> | ting Filter Type  ess F1 (Filter Type) to display the setting window.  ect "Filter Type" by using (Entry keys) or the rowy knob.  ess Set. |
|                                      |                                                                                                                                            |

The following Filters are selectable for Filter Type:

- 22 MHz, 20 MHz, 10 MHz, 5 MHz, 3 MHz
- 3.84 MHz (RRC): α = Root Raised Cosine Filter of 0.22
- 3.84 MHz (RC):  $\alpha$  = Raised Cosine Filter of 0.22
- · Selecting Data Count
- Press F2 (Data Count) to display the setting window.
- Enter the measurement point by using ( (Entry keys), the rotary knob, or the numeric keypad.
- Press Set 3.

Decimal point and the below value is truncated.

- · Selecting Analysis Length
- Press [F3] (Analysis Length) to display the setting window.
- Enter the analysis length by using ( \( \shcap \) ✓ ) (Entry keys), the rotary knob, or the numeric keypad.
- Press [Set].

Analysis Length is a measurement section required for one measurement. The data started from the set Analysis Length is to be measured up to the set Data Count value.

#### 3.8.5 **Optimizing measurement range (Adjust Range)**

Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on measurement range optimization.

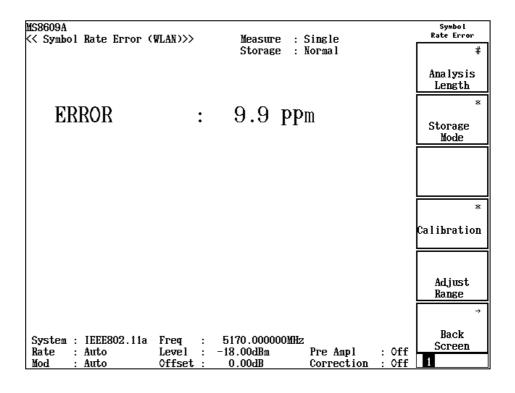
#### 3.8.6 **Calibration function (Calibration)**

Refer to Section 3.2.16, "Calibration function (Calibration)" for more information on calibration.

# 3.9 Measuring Symbol Rate Error

Press (More) on the Setup Common Parameter screen to display the second page of the function label. Then press F3 (Symbol Rate Error) to move to the Symbol Rate Error screen (symbol rate frequency error

measurement).


This section explains the measured results and setting parameters shown on the Symbol Rate Error screen (symbol rate frequency error measurement). Measuring Symbol Rate Error is enabled when the target system is set to IEEE802.11a or IEEE802.11g (ERP-OFDM) or IEEE802.11g (DSSS-OFDM).

## 3.9.1 Explanation of measured results

This section explains the measured results shown on the Symbol Rate Error (symbol rate frequency error measurement) screen. Before performing measurements, adjust the RF input level to optimize the level settings inside the measuring instrument. Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on how to adjust the RF input level.

### Results of symbol rate frequency error measurement

Communication standard: IEEE802.11a, IEEE802.11g (ERP-OFDM)
IEEE802.11g (DSSS-OFDM)



#### **ERROR**

Displays the results of symbol rate frequency error measurement in ppm units.

## 3.9.2 Changing analysis length (Analysis Length)

This section explains how to set the number of symbols to be analyzed (signal length of a signal to be measured excluding the preamble).

## Setting the analysis length

- 1. Press F1 (Analysis Length) on the Symbol Rate Error screen to open the setting window.
- 2. Press (\( \sigma \) (Entry keys), turn the rotary knob, or use the numeric keypad to enter the analysis length in symbol units or symbol units.
- 3. Press [Set].

After the setting is completed, another measurement is taken. The signal is not re-measured if no values are changed or when Cancel is selected.

If the set analysis length is longer than the signal length of a signal to be measured, the section exceeding the signal length cannot be correctly analyzed. Set the analysis length so that it is equal to or less than the signal length of the signal to be measured except for the preamble.

# 3.9.3 Averaging (Storage Mode)

This section explains how to set the averaging process for the measured results.

#### Setting the averaging process

- 1. Press F2 (Storage Mode) on the Symbol Rate Error screen to display the Storage Mode function label.
- 2. Press [F2] (Average Count) to open the setting window.
- 3. Press (Contry keys), turn the rotary knob, or use the numeric keypad to input the averaging count.
- 4. Press [Set].
- 5. On the Storage Mode menu, press F1 (Storage Mode).
- 6. Press (Contraction (Entry keys) or turn the rotary knob to select "Average."
- 7. Press [Set].

After the setting is completed, another measurement is taken.

If the averaging count is changed when the storage mode is set to "Average," another measurement is also taken after the setting is completed. When no values are changed or when Cancel is selected, measurement is not taken again.

F3 (Refresh Interval): Sets the update timing for the average value display. After setting is changed, another measurement is taken.

- Every: Updates the display after every measurement is taken.
- Once: Updates the display after as many measurements as the set averaging count are taken.

The following modes can be selected for the storage mode:

- Normal: Updates and displays the measured result after every measurement.
- Average: Averages and displays the measured result after every measurement.

# 3.9.4 Calibration function (Calibration)

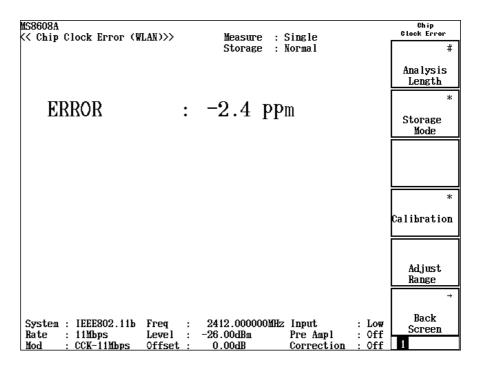
Refer to Section 3.2.16, "Calibration function (Calibration)" for more information on calibration.

## 3.9.5 Optimizing measurement range (Adjust Range)

Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on measurement range optimization.

# 3.10 Measuring Chip Clock Frequency

Press (More) on the Setup Common Parameter screen to display the second page of the function label. Then press F4 (Chip Clock Error) to move to the Chip Clock Error screen (chip clock frequency measurement).


This section explains the measured results and setting parameters shown on the Chip Clock Error screen (chip clock frequency measurement). Measuring Chip Clock Frequency is enabled when the target system is set to IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK).

## 3.10.1 Explanation of measured results

This section explains the measured results shown on the Chip Clock Error (chip clock frequency measurement) screen. Before performing measurements, adjust the RF input level to optimize the level settings inside the measuring instrument. Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on how to adjust the RF input level.

#### Results of chip clock frequency measurement

Communication standard: IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)



#### **ERROR**

Displays the results of chip clock frequency measurement in ppm units.

## 3.10.2 Changing analysis length (Analysis Length)

This section explains how to set the number of symbols to be analyzed (signal length of a signal to be measured excluding the preamble).

## Setting the analysis length

- 1. Press F1 (Analysis Length) on the Chip Clock Error screen to open the setting window.
- 2. Press (Entry keys), turn the rotary knob, or use the numeric keypad to enter the analysis length in symbol units or chip units.
- 3. Press Set

After the setting is completed, another measurement is taken. The signal is not re-measured if no values are changed or when Cancel is selected.

If the set analysis length is longer than the signal length of a signal to be measured, the section exceeding the signal length cannot be correctly analyzed. Set the analysis length so that it is equal to or less than the signal length of the signal to be measured except for the preamble.

## 3.10.3 Averaging (Storage Mode)

This section explains how to set the averaging process for the measured results.

## Setting the averaging process

- 1. Press F2 (Storage Mode) on the Chip Clock Error screen to display the Storage Mode function label.
- 2. Press F2 (Average Count) to open the setting window.
- 3. Press (Entry keys), turn the rotary knob, or use the numeric keypad to input the averaging count.
- 4. Press Set.
- 5. On the Storage Mode menu, press F1 (Storage Mode).
- 6. Press ( (Entry keys) or turn the rotary knob to select "Average."
- 7. Press Set

After the setting is completed, another measurement is taken.

If the averaging count is changed when the storage mode is set to "Average," another measurement is also taken after the setting is completed. When no values are changed or when Cancel is selected, measurement is not taken again.

F3 (Refresh Interval): Sets the update timing for the average value display. After setting is changed, another measurement is taken.

- Every: Updates the display after every measurement is taken.
- Once: Updates the display after as many measurements as the set averaging count are taken.

The following modes can be selected for the storage mode:

- Normal: Updates and displays the measured result after every measurement.
- Average: Averages and displays the measured result after every measurement.

## 3.10.4 Calibration function (Calibration)

Refer to Section 3.2.16, "Calibration function (Calibration)" for more information on calibration.

# 3.10.5 Optimizing measurement range (Adjust Range)

Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on measurement range optimization.

# 3.11 Measuring IQ Level

Press (More) on the Setup Common Parameter screen to display the second page of the function label. Then press F5 (IQ Level) to move to the IQ Level screen (IQ level measurement). This section explains the measured results and setting parameters shown on the IQ Level screen (IQ level measurement) as well as operation cautions. Note that this measurement cannot be performed when RF input is selected.

## 3.11.1 Explanation of measured results

This section explains the measured results shown on the IQ Level screen (chip clock frequency measurement).

#### MS8608A IQ Level << IQ Level (WLAN) >> Measure : Single Storage : Normal Level 40.84 dBmV (rms) 40.82 dBmV (rms) Storage 56.26 dBmVp-p Mode 57.19 dBmVp-p Phase lIn i t. I/Q difference 90.63 deg. Back System : IEEE802.11a Screen 24Mbps Rate OFDM-16QAM Mod

Results of IQ level measurement

## (1) Level (I and Q)

Displays the effective value levels of the I-phase signal and Q-phase signal in mV or dBmV units.

(2) Level (Ip-p and Qp-p)

Displays the Peak to Peak value levels of the I-phase signal and Q-phase signal in mV or dBmV units.

(3) Phase (I/Q difference)

Displays the phase difference between the I-phase signal and Q-phase signal in deg. units when CW signals with the same frequency are input to the I-phase input and Q-phase input. This is useful for measuring the orthogonality of a quadrature demodulator.

## 3.11.2 Averaging (Storage Mode)

This section explains the storage mode by showing how to set the averaging process for measured results.

## Setting the averaging process

- 1. Press [F2] (Storage Mode) on the IQ Level screen to display the Storage Mode function label.
- 2. Press F2 (Average Count) to open the setting window.
- 3. Press ( (Entry keys), turn the rotary knob, or use the numeric keypad to input the averaging count.
- 4. Press Set.
- 5. On the Storage Mode menu, press F1 (Storage Mode) to open the selecting window.
- 6. The window for selection opens.
- 7. Press ( ) (Entry keys) or turn the rotary knob to select "Average."
- 8. Press Set

After the setting is completed, another measurement is taken.

If the averaging count is changed when the storage mode is set to "Average," another measurement is also taken after the setting is completed. When no values are changed or when Cancel is selected, measurement is not taken again.

Refresh Interval: Sets the update timing for the average value display. After setting is changed, another measurement is taken.

- Every: Updates the display after every measurement is taken.
- Once: Updates the display after as many measurements as the set averaging count are taken.

The following modes can be selected for the storage mode:

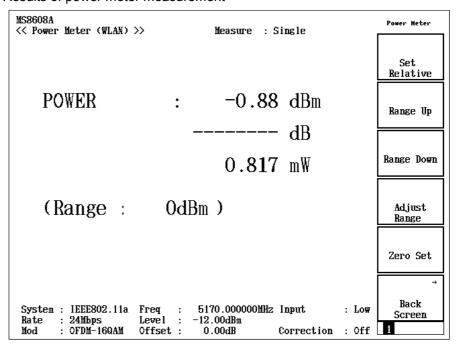
- Normal: Updates and displays the measured result after every measurement.
- Average: Averages and displays the measured result after every measurement.

# 3.11.3 Changing measured results unit (Unit)

The measured results unit for the IQ level can be changed.

Changing the measured result display unit display for IQ level Press  $\boxed{F3}$  (Unit) on the IQ Level screen to open the following function labels, and then select a display unit.

- F1 (mV):
  Displays in mV units.
- F2 (dBmV): Displays in dBmV units.
- F6 (return):
  Returns to the previous function label display.


## 3.12 Power Meter

When using the MS860x as the analyzer main body, press F6 (Power Meter) on the second page of the function label on the Setup Common Parameter screen to move to the Power Meter screen (power meter). This section explains the measured results and setting parameters shown on the Power Meter screen (power meter) as well as operation cautions. Note that this measurement cannot be performed when Terminal is IQ or Measuring Object is Burst.

## 3.12.1 Explanation of measured results

This section explains the measured results shown on the Power Meter screen (power meter). Before performing measurements, adjust the RF input level to optimize the level settings inside the measuring instrument by pressing F5 (Adjust Range). Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on how to adjust the RF input level.

#### Results of power meter measurement



#### (1) POWER

Displays the power measured by the built-in power in dBm, relative level and W units. The relative level is based on the measured value at the point when F1 (Set Relative) is pressed as the reference value (0 dB).

(2) Range Displays the current measurement range.

## 3.12.2 Performing zero-point calibration (Zero Set)

Zero-point calibration must be performed before using the power meter. Set the RF input connector to the "no input" status (inputting no signals), then press F5 (Zero Set) to perform zero-point calibration. If power meter measurement is performed without performing zero-point calibration in advance, incorrect measured results may be obtained.

## 3.12.3 Using relative value display (Set Relative)

This section explains how to display a relative value.

Press [F1] (Set Relative) to display a relative value. The relative value is based on the power value at the point when [F1] (Set Relative) is pressed as the reference value (0 dB).

## 3.12.4 Setting measurement range (Range Up/Range Down)

The measurement range for the power meter can be set.

## Measurement range

The following measurement range steps are available:

When using MS8608A with high-power input: 0 dBm, +10 dBm, +20 dBm, +30 dBm, +40 dBm

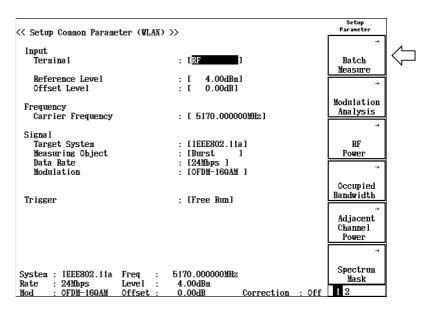
When using MS8608A with low-power input or using MS8609A:
-20 dBm, -10 dBm, 0 dBm, +10 dBm, +20 dBm

#### Setting measurement range

Pressing F2 (Range Up) raises the measurement range step.

Pressing [F3] (Range Down) lowers the measurement range step.

Pressing [F4] (Adjust Range) adjusts the measurement range according to the input signal for optimization. Refer to Section 3.2.15, "Optimizing measurement range (Adjust Range)" for more information on measurement range optimization.


# 3.13 Measuring in Batch

The previous sections describe how to execute each measurement.

This section describes the batch function, which enables to execute these measurements in batch. Using this function, you can easily measure the overall transmission characteristics of a measuring object. You can also easily check that the measuring object meets the standards as pass/fail judgment thresholds are set for each measurement item.

Press F1 (Batch Measure) on the Setup Common Parameter screen to move to the batch measurement screen.

Note that this measurement cannot be performed when Target System is HiSWANa and Data Rate is Auto.

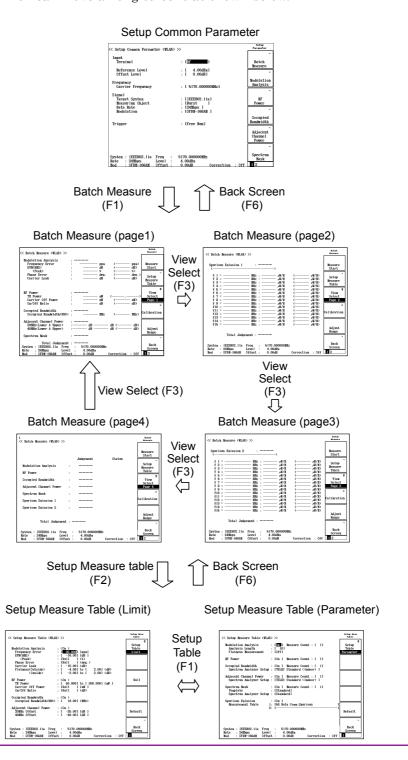


The following items are measured at batch measurement.

- Modulation analysis
  - Frequency
  - EVM
  - Phase error
  - Carrier leak (for IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) and IEEE802.11g (DSSS-OFDM) only)
  - Flatness (for IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) and IEEE802.11g (DSSS-OFDM) only)
  - Magnitude error (for IEEE802.11b and IEEE802.11g (ERP-DSSS/ CCK) only)
  - Origin offset (for IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK only)

- RF power
  - Transmit power
  - Carrier off power
  - On/Off ratio
  - Rising/falling time (for IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK only)
- Occupied frequency bandwidth
- Adjacent channel leakage power (for IEEE802.11a, HiperLAN2 and HiSWANa only)
- Spectrum mask
- Spurious (2 tables)

#### Note:

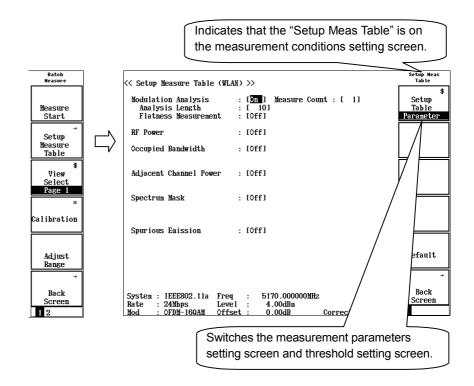

When the window is changed or a parameter is changed on setting window, the measurement becomes the unmeasured state.

## 3.13.1 Screen transition

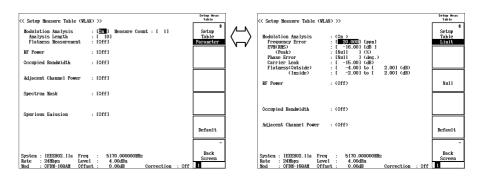
Two types of screens are used for batch measurement.

- Measurement screen (Batch Measure), four pages in total
- Measurement parameters setting screen (Setup Measure Table), two pages in total

You can move among screens as shown below.




## 3.13.2 Setting conditions for measurement

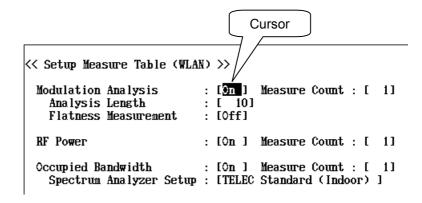

Set the conditions for each measurement item before executing batch measurement. There are the following measurement conditions:

- 1. Whether or not to measure the item
- 2. Average count
- 3. Parameters specific to the measurement item
- 4. Pass/fail judgment threshold

Press F2 (Setup Measure Table) on the Batch Measure screen to move to the screen for measurement condition setting.

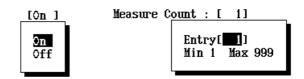


Press [F1] (Setup Table Parameter/Limit) to switch between the measurement parameters setting screen and threshold setting screen. This is a toggle key that switches the screens each time it is pressed.



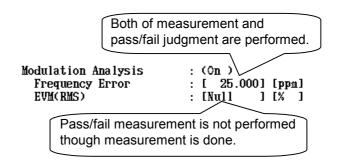

3-125

Use the Setup Common Parameter screen to set the input signal parameters such as frequency and reference level as explained in the previous sections. Refer to Section 3.1, "Setting Measurement Parameters" for details.

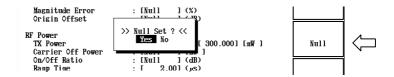

The cursor is positioned on the inverted part on the screen. You can set the measurement parameter pointed by the cursor.

You can move the cursor up, down, right and left by using the rotary knob or step key.




Press Set to open a small window near the cursor. Select an item with the rotary knob or directly enter a value with the numeric keypad. Then press Set again to confirm the value.

To cancel the input, press [Cancel].



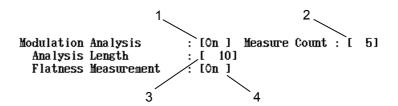

Whether or not to perform pass/fail judgment is determined when setting a threshold for pass/fail judgment.

Pass/fail judgment will be performed at the same time as measurement when a threshold is set for the item. If "Null" is set to the threshold, pass/fail judgment is not performed though measurement is done.

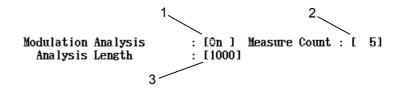


Press F3 (Null) to set "Null" to the threshold. When a small window for confirmation opens, select "Yes" and press Set.




Press F5 (Default) to initialize the threshold setting. When a small window for confirmation appears, select "Yes" and press Set.

The next section will describe the details on each measurement item.


## 3.13.3 Setting modulation analysis

#### a. Measurement parameters settings

For IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) and IEEE802.11g (DSSS-OFDM)



For IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK)



#### 1. Measurement execution

Sets whether or not to perform the modulation analysis.

On: Performs the measurement.

Off: Does not perform the measurement.

#### 2. Average count

Sets the average count for modulation analysis. The value set here does not affect other measurement items. The range setting is from 1 to 999.

#### 3. Analysis length

Sets the data length for signal analysis.

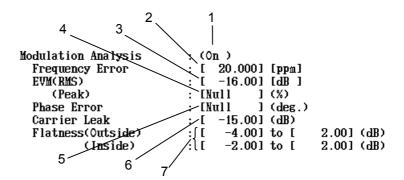
The length is in chip units for IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK) and in symbol units for IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) and IEEE802.11g (DSSS-OFDM).

Set a longer analysis length so that measurements have the mean effect. However, note that the analysis length should be shorter than a single burst.

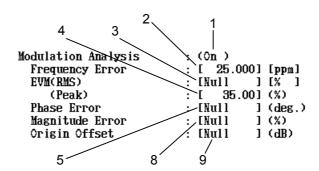
4. Flatness measurement execution (IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) and IEEE802.11g (DSSS-OFDM))

Performs whether or not to perform the flatness measurement.

On: Performs the measurement.


Off: Does not perform the measurement.

The flatness measurement takes several seconds. This is longer than the measurement time of other modulation analysis items. To shorten the overall modulation analysis time, do not execute the flatness measurement.


The flatness measurement is valid only when the signal is in the burst status and RF input is selected. When the signal level fluctuates, the signal may not be measured correctly.

#### b. Threshold settings

For IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) and IEEE802.11g (DSSS-OFDM)



For IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK)



#### 1. Measurement execution

The value set at measurement parameter setting is displayed. This value cannot be changed here.

#### 2. Frequency error

Sets the frequency threshold. The range settings are as follows:

0.000 to 99.999 ppm

0.0 to 200000.0 Hz

The pass/fail judgment results in Pass if the absolute value of the measured result is equal to or smaller than the set threshold.

#### 3. EVM (RMS)

Sets the threshold for the rms EVM value. The range settings are as follows:

-50.00 to 0.00 dB (for IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) and IEEE802.11g (DSSS-OFDM) only)

0.30 to 99.99%

The pass/fail judgment results in Pass if the measured result is equal to or smaller than the set threshold.

#### 4. EVM (Peak)

Sets the threshold for the peak EVM value. The range setting is as follows:

0.30 to 99.99%

The pass/fail judgment results in Pass if the measured result is equal to or smaller than the set threshold.

#### Phase error

Sets the threshold for rms phase errors. The range setting is as follows:

0.01 to 180.00 deg

The pass/fail judgment results in Pass if the measured result is equal to or smaller than the set threshold.

#### 6. Carrier leak

Sets the threshold for carrier leak for IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) and IEEE802.11g (DSSS-OFDM). The range setting is as follows:

-50.00 to 50.00 dB

The pass/fail judgment results in Pass if the measured result is equal to or smaller than the set threshold.

#### 7. Flatness

Sets the flatness threshold for IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) and IEEE802.11g (DSSS-OFDM). The range settings for Outside and Inside are as follows:

Lower limit value: -20.00 dB to upper limit value Upper limit value: Lower limit value to 20.00 dB

The left value is the lower limit value and the right one is the upper limit value.

The pass/fail judgment results in Pass if the measured result is between the lower and upper limit values (including these limits).

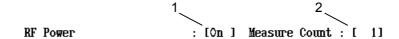
#### 8. Magnitude error

Sets the threshold for actual magnitude errors for IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK). The range setting is as follows:

0.01 to 99.99%

The pass/fail judgment results in Pass if the measured result is equal to or smaller than the set threshold.

#### Origin offset


Sets the origin offset threshold for IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK). The range setting is as follows:

-99.99 to 0.00 dB

The pass/fail judgment results in Pass if the measured result is equal to or smaller than the set threshold.

## 3.13.4 Setting RF power

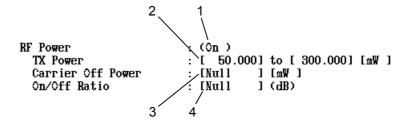
#### a. Measurement parameters settings



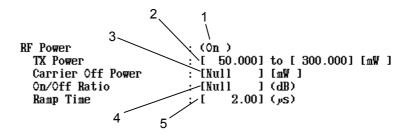
#### Measurement execution

Sets whether or not to perform the RF power measurement.

On: Performs the measurement.


Off: Does not perform the measurement.

#### 2. Average count


Sets the average count for power measurements. The value set here does not affect other measurement items. The range setting is from 1 to 999.

#### b. Threshold settings

For IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) and IEEE802.11g (DSSS-OFDM)



For IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK)



#### 1. Measurement execution

The value set at measurement parameter setting is displayed. This value cannot be changed here.

#### 2. Transmit power

Sets the transmit power threshold. The range settings are as follows:

Upper limit value: Lower limit value to 999.999 mW, or lower

limit value to 40.00 dBm

Lower limit value: 0.001 mW to upper limit value, or −60 dBm

to upper limit value.

The pass/fail judgment results in Pass if the measured result is between the lower and upper limit values (including these limits).

#### 3. Carrier off power

Sets the threshold when the burst is Off and the signal is in the burst status. The range settings are as follows:

0.001 to 999.999 mW

-99.99 to 40.00 dBm

The pass/fail judgment results in Pass if the measured result is equal to or smaller than the set threshold.

#### 4. On/Off ratio

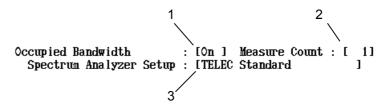
Sets the On/Off ratio threshold while the signal is in the burst status. The range setting is as follows:

0.0 to 99.99 dB

The pass/fail judgment results in Pass if the measured result is equal to or larger than the set threshold.

#### 5. Ramp time (rising/falling time)

Sets the threshold for burst rising/falling times while the signal is in the burst status for IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK). The range setting is as follows:


0.00 to 20.00 us

The pass/fail judgment results in Pass if both of the rising time and falling time are equal to or smaller than the threshold.

## 3.13.5 Setting occupied frequency bandwidth

Set the parameters for occupied frequency bandwidth measurement.

#### a. Measurement parameters settings



#### 1. Measurement execution

Sets whether or not to perform the occupied frequency bandwidth measurement.

On: Performs the measurement.

Off: Does not perform the measurement.

#### 2. Average count

Sets the average count for occupied frequency bandwidth measurements. The value set here does not affect other measurement items. The range setting is from 1 to 999.

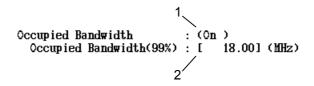
#### 3. Parameters settings for the spectrum analyzer

The occupied frequency bandwidth measurement is performed by using the spectrum analyzer function. So, it is necessary to set the RBW, VBW and other parameters that are set to the spectrum analyzer. Select one of the following items.

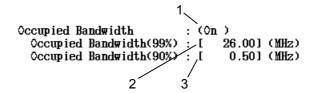
#### IEEE802.11a, HiSWANa and HiperLAN2

• TELEC Standard (Indoor): 5 GHz band low power data communication system

• TELEC Standard (Outdoor): 5 GHz band radio access system


• User: User defined. Refer to Section 3.4.3, "Measuring by using any measurement parameters" for details.

#### IEEE802.11b and IEEE802.11g


- TELEC Standard: 2.4 GHz band wide band low power data communication system
- User: User defined. Refer to Section 3.4.3, "Measuring by using any measurement parameters" for details.

#### b. Threshold settings

For IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) and IEEE 802.11g (DSSS-OFDM)



For IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK)



#### 1. Measurement execution

The value set at measurement parameter setting is displayed. This value cannot be changed here.

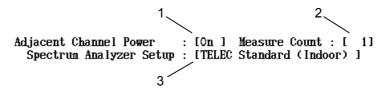
#### 2. Occupied frequency bandwidth

Sets the threshold for the occupied frequency bandwidth. The range setting is as follows:

The pass/fail judgment results in Pass if the measured result is equal to or smaller than the set threshold.

#### 3. Spreading bandwidth

Sets the spreading bandwidth threshold when the target system is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK). The range setting is as follows:


#### 0.00 to $40.00~\mathrm{MHz}$

The pass/fail judgment results in Pass if the measured result is equal to or larger than the set threshold.

### 3.13.6 Setting adjacent channel leakage power

Set the parameters for adjacent channel leakage power measurement. This measurement is valid when the target system is IEEE802.11a, HiperLAN2, or HiSWANa.

#### a. Measurement parameters settings



#### 1. Measurement execution

Sets whether or not to perform the adjacent channel leakage power measurement.

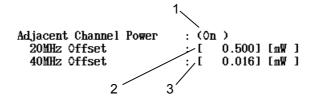
On: Performs the measurement.

Off: Does not perform the measurement.

#### Average count (Measure Count)

Sets the average count for adjacent channel leakage power measurements. The value set here does not affect other measurement items. The range setting is from 1 to 999.

3. Parameters settings for the spectrum analyzer (Spectrum Analyzer Setup)


The adjacent channel leakage power measurement is performed by using the spectrum analyzer function. So, it is necessary to set the RBW, VBW and other parameters that are set to the spectrum analyzer. Select one of the following items.

#### IEEE802.11a, HiperLAN2, and HiSWANa

- TELEC Standard (Indoor): 5 GHz band low power data communication system
- TELEC Standard (Outdoor): 5 GHz band radio access system
- User:

  User defined. Refer to Section 3.5.5, "Measuring by using any measurement parameters" for details.

#### b. Threshold settings



#### 1. Measurement execution

The value set at measurement parameter setting is displayed. This value cannot be changed here.

20 MHz offset adjacent channel leakage power
 Sets the threshold for the ±20 MHz offset adjacent channel leakage power measurement.

The range settings are as follows:

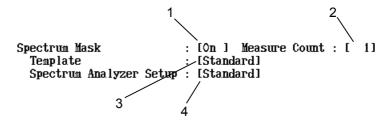
- -99.99 to 0.00 dB
- -99.99 to 40.00 dBm
- 0.001 to 999.999 mW

The pass/fail judgment results in Pass if both of the +20 MHz and — 20 MHz adjacent channel leakage powers are equal to or smaller than the set threshold.

40 MHz offset adjacent channel leakage power
 Sets the threshold for the ±40 MHz offset adjacent channel leakage

power measurement.

The range settings are as follows:


- -99.99 to 0.00 dB
- -99.99 to 40.00 dBm
- 0.001 to 999.999 mW

The pass/fail judgment results in Pass if both of the +40 MHz and — 40 MHz adjacent channel leakage powers are equal to or smaller than the set threshold.

## 3.13.7 Setting spectrum mask

Set the parameters for spectrum mask measurement.

#### a. Measurement parameters settings



#### 1. Measurement execution

Sets whether or not to perform the spectrum mask measurement.

On: Performs the measurement.

Off: Does not perform the measurement.

#### 2. Average count (Measure Count)

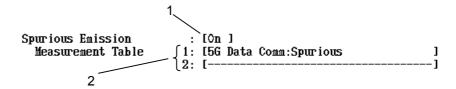
Sets the average count for spectrum mask measurements. The value set here does not affect other measurement items. The range setting is from 1 to 999.

#### 3. Standard mask (Template)

Selects the mask used for judgment. Select one of the following items.

- Standard: Mask conforming to IEEE802.11b, IEEE802.11g or IEEE802.11a
- User: User-defined mask. Refer to Section 3.6.3, "Changing standard line of spectrum mask" for user-defined masks.

# 4. Parameters settings for the spectrum analyzer (Spectrum Analyzer Setup)


The spectrum mask measurement is performed by using the spectrum analyzer function. So, it is necessary to set the RBW, VBW and other parameters that are set to the spectrum analyzer. Select one of the following items.

- Standard: Setting conforming to IEEE802.11b, IEEE802.11g or IEEE802.11a
- User: User-defined. Refer to Section 3.6.3, "Changing standard line of spectrum mask" for user-defined settings.

## 3.13.8 Setting the spurious

Set the parameters for the spurious measurement.

#### a. Measurement parameters settings



#### 1. Measurement execution

Sets whether or not to perform the spurious measurement.

On: Performs the measurement.

Off: Does not perform the measurement.

#### 2. Spurious standards (Measurement Table)

Selects the spurious standard for judgment, from the following items:

#### **TELEC Technical Regulations Conformity Certification**

2.4G Data Comm: Spurious: Level of spurious emission for the

2.4 GHz band wide band low power

data communication system

2.4G Data Comm: Secondary Emission:

Level of secondary emission for the 2.4 GHz band wide band low power

data communication system

2.4G Data Comm(14CH): Spurious: Level of spurious emission for the

2.4 GHz band low power data com-

munication system

5G W-Access 5.03 GHz: Spurious & OBL:

Spurious emission and out-of-band radiation power for the 5.03 GHz band of the 5 GHz band radio access

system

5G W-Access 4.9 GHz: Spurious & OBL:

Spurious emission and out-of-band radiation power for the 4.9 GHz band of the 5 GHz band radio access

system

5G W-Access: Secondary Emission: Level of secondary emission for the

5 GHz band radio access system

5G Data Comm: Spurious: Level of spurious emission of the 5

GHz band low power data commu-

nication system

5G Data Comm: OBL: Out-of-band radiation power of the 5

GHz band low power data commu-

nication system

5G Data Comm: Secondary Emission:

Out-of-band leakage power of the 5 GHz band low power data commu-

nication system

ETSI

ETSI TS101 475 Signal ON: ETSI TS 101 475

V1.3.1 (2001-12)

5.8.3 Active Transmit

ETSI TS101 475 Signal OFF: ETSI TS 101 475

V1.3.1 (2001-12) 5.8.3 Other Modes

FCC

FCC 15.407 5.15-5.25 GHz Band: CFR Title47, Chapter1,

Part15, Sec15.407, Paragraph (b) (1)

 $FCC\ 15.407\ 5.25\text{-}5.35\ GHz\ Band: \qquad CFR\ Title 47,\ Chapter 1,$ 

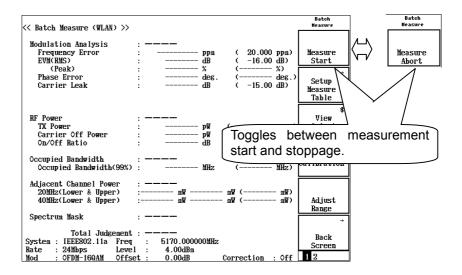
Part15, Sec15.407, Paragraph (b) (2)

FCC 15.407 5.725-5.825 GHz Band: CFR Title47, Chapter1,

Part15, Sec15.407, Paragraph (b) (3)

FCC 15.247 2.4 GHz Band: CFR Title47, Chapter1,

Part15, Sec15.247, Paragraph (c)


Spot Table

You can set two different spurious standards in Measurement Table 1 and Measurement Table 2.

## 3.13.9 Starting and stopping measurement

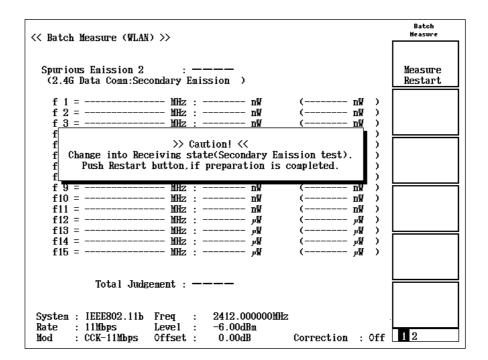
Press F1 (Measure Start) on the Batch Measure screen to start measurement.

Pressing the F1 key during measurement stops the measurement halfway. Note that pressing this key completely stops measurement disabling to resume it.



## **CAUTION** /

 $\overline{\mathrm{Single}}$  on the front panel is disabled during batch measurement.


You can stop measurement according to each measurement item's result (pass/fail judgment result) instead of pressing F1. You can choose one of the following conditions.

- 1. Aborts the measurement when a status error such as "Level Under" occurs during measurement.
- 2. Aborts the measurement when the pass/fail judgment for an item results in "FAIL".
- 3. Aborts the measurement when the pass/fail judgment for an item results in "FAIL" or a status abnormality occurs.
- 4. Continues the measurement irrespective of the pass/fail judgment result and status.

Refer to Section 3.13.13, "Measurement mode" for these settings.

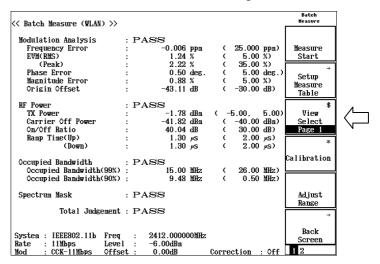
If secondary emission measurement is selected as follows for the spurious measurement (refer to Section 3.13.8, "Setting the spurious"), the message shown in the figure below is displayed before starting the spurious measurement and the measurement operation is interrupted. Change the DUT setting to the receiving state at this time.

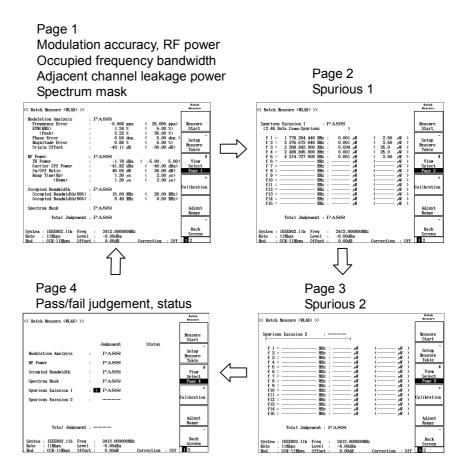
2.4 G Data Comm: Secondary Emission
 5 G W-Access: Secondary Emission
 5 G Data Comm: Secondary Emission



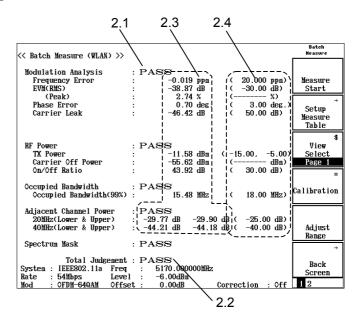
When the DUT setting is changed to the receiving state, press [F1] (Measure Restart) to restart the measurement. If some transmission tests still exist after completing the secondary emission measurement, the message above is displayed again. In this event, change the DUT setting to the transmitting state and restart the measurement.

#### 3.13.10 Measured results


1. Screen switching


Measured results are displayed on up to four screens.

- Modulation accuracy, RF power, occupied frequency bandwidth, adjacent channel leakage power, and spectrum mask
- Spurious 1
- Spurious 2
- Pass/fail judgment status


Press [F3] (View Select) to switch to another screen.

The Spurious 1 and Spurious 2 screens are displayed when the spurious measurement is set. The Page 4 screen is always displayed when measurement is finished or interrupted.





#### 2. Page 1 screen



The Page 1 screen displays the following measured results.

- Modulation accuracy
- RF power
- Occupied frequency bandwidth
- Adjacent channel leakage power
- Spectrum mask

Descriptions on each item displayed in the Page 1 screen are as follows:

2.1 Pass/fail judgment result of each measurement item
Judgment results indicate whether each measured result does
not exceed the threshold.

PASS: Accepted (including the case that the measured value equals to the threshold)

FAIL: Rejected

All judgment results for each measurement item are reflected to the total judgment result (Total Judgment).

2.2 Total pass/fail judgment result (Total Judgment)
Total pass/fail judgment of each measured result.

PASS: Accepted (when all items result in "PASS")

FAIL: Rejected

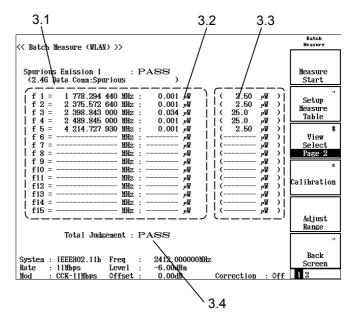
#### 2.3 Measured value

Measured results of each measurement item.

#### • When no threshold is set

The pass/fail judgment is not performed for the item without a threshold although measurement is done. For such an item, the measured value is displayed in gray (according to the default color setting) and bars are displayed in the threshold field.




When the judgment results in FAIL (rejected)
 When the measured value exceeds the threshold, the whole field is highlighted in red (according to the default color setting).



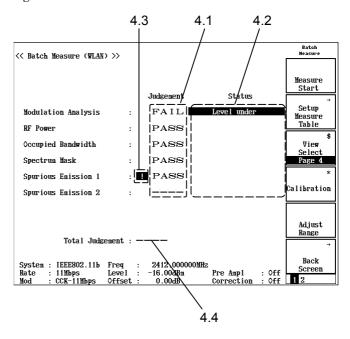
#### 2.4 Threshold

Reference values for pass/fail judgment of each measurement item.

#### 3. Page 2 and Page 3 screens



3-145


The Page 2 and Page 3 screens display the spurious measured results

- 3.1 Selected measurement standards.
- 3.2 Measured results for each spurious table.
- 3.3 Reference values for pass/fail judgment of each spurious table.
- 3.4 Total pass/fail judgment result (Total Judgment)
  Total pass/fail judgment of all measured results including those on Page 1.

PASS: Accepted (when all items result in "PASS")

FAIL: Rejected

#### 4. Page 4 screen



The Page 4 screen displays the Pass/fail judgment results and statuses for each measurement item.

- 4.1 Pass/fail judgment results for each measurement item.
- 4.2 Statuses for each measurement item. When Error status is displayed, the judgment becomes FAIL.

- 4.3 A mark indicating the measurement item for which measurement was interrupted after Measure Abort was found.
- 4.4 Total pass/fail judgment result (Total Judgment)
  Total pass/fail judgment of all measured results.

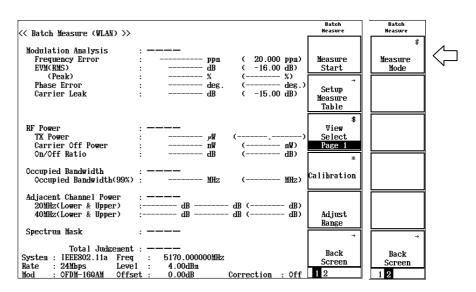
PASS: Accepted (when all items result in "PASS")

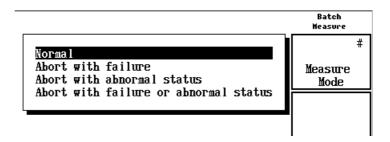
FAIL: Rejected

### 3.13.11 Calibration function (Calibration)

Refer to Section 3.2.16, "Calibration function (Calibration)" for more information on calibration.

## 3.13.12 Optimizing measurement range (Adjust Range)


Refer to Section 3.2.15, "Optimizing measurement range" for more information on measurement range optimization.


### 3.13.13 Measurement mode

By default, all the items are measured even if the pass/fail judgment for an item results in "FAIL". However, you can set to abort the measurement when a pass/fail judgment results in "FAIL".

The setting determining measurement abort condition is called the "measurement mode."

In order to switch measurement modes, press (More) on the Batch Measure screen to move to the second function key page and press F1 (Measure Mode). Select a mode from the opened small window.





#### Normal:

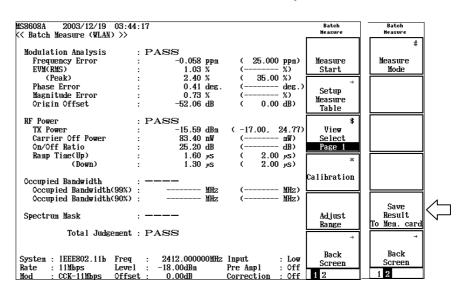
Continues measurement until completed, irrespective of the pass/fail judgment results and status errors.

#### Abort with failure:

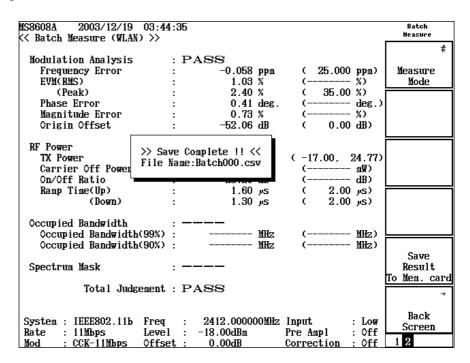
Aborts the measurement when the pass/fail judgment for an item results in "FAIL".

#### Abort with abnormal status:

Aborts the measurement when a status error such as "Level under" and "Signal abnormal" occurs during measurement.


#### Abort with failure or abnormal status:

Aborts the measurement when the pass/fail judgment for an item results in "FAIL" or a status error such as "Level under" and "Signal abnormal" occurs during measurement.


## 3.13.14 Saving measurement results

The results of measured items can be saved into a memory card.

Press (More) on the Batch Measure screen to display the second page of the function label. Then press F5 (Save Result To Mem. card) to save the measurement results into a memory card.



The following message is displayed when the saving operation is completed.



Measurement results are saved only when Total Judgment is determined after measurement completion. Measurement results of unmeasured items are not saved.

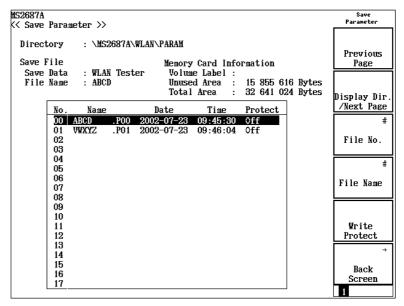
## 3.14 Saving and Recalling Setting Parameters

This section explains how to save the set parameter values in a memory card, and how to recall them from the card.

Insert a memory card into the memory-card insertion slot before saving or recalling the set parameter values.

The memory card can be inserted or removed only when the power is on. However, be sure not to insert or remove the memory card when saving or recalling in progress.

A single memory card can hold 100 types of settings (files). These files are saved in file Nos. 0 through 99.


In addition, a file name using alphanumeric characters can also be created if necessary, and write-protect can be set.

Since the file is MS-DOS formatted, the file name can contain up to eight characters, and no differentiation can be made between upper-case and lower-case characters.

## 3.14.1 Saving parameters (Save)

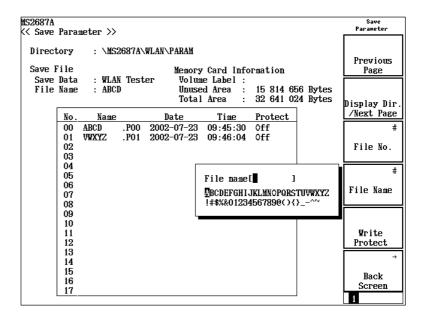
To save parameters, display the Save Parameter screen by the following procedures.

- 1. Insert a memory card into the memory-card insertion slot.
- 2. Press Shift and then press Recall.
- 3. Press [F2] (Display Dir.).



A single memory card can hold 100 types of settings (files). These files are saved in file Nos. 0 through 99.

- 4. Press (Cantry keys) or turn the rotary knob to move the cursor and select a file No.
  - Or, press F3 (File No.) to open a setting window, and input a file No. using the numeric keypad.
- 5. Press Set (Entry key).
- 6. When a confirmation window opens, select "Yes" and press [Set] .


Through the above procedures, the value set for each parameter is saved into a memory card.

When a file is saved under a new file number, a file name, "PA-RAM\*\*.P\*\*" (\*\*representing the file No.), is automatically assigned. When a file is saved under a file number already assigned, the file is overwritten under the same name.

## 3.14.2 Saving file under different name (File Name)

Press F4 (File Name) as the fourth step of the parameter saving procedure to save a file under a new name.

This section explains how to input a new file name after pressing F4 (File Name).



#### · Procedure for inputting file name

- 1. Turn the rotary knob to move the cursor on the list of characters, and select a character you wish to input.
- 2. Press Enter . The selected character is input into the entry area.
- 3. Repeat Step 2 above to completely input a file name.

Alphanumeric characters, A through F, and 0 through 9, can also be input from the numeric keypad directly.

A file name can contain up to eight characters. Only characters displayed on the list of characters can be used. Other characters cannot be used.

- 4. Press [Set] when you have finished inputting a file name.
- 5. When a confirmation window opens, select "Yes" and press [Set].

Through the above procedures, a file is saved under the new name.

• Rotary knob: Moves the cursor on the list of characters.

• Moves the cursor in the entry area.

• BS: Deletes a character before the cursor in the entry

area.

• Enters a character (located at the cursor position on

the list of characters) to the cursor position in the

entry area.

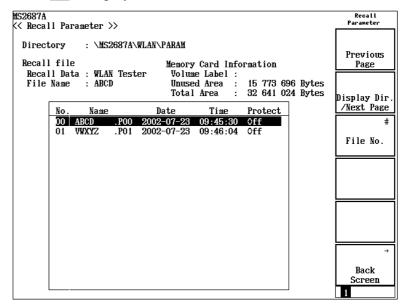
• [Set]: Sets a character string in the entry area as a file

name.

## 3.14.3 Write-protecting file (Write Protect)

This section explains how to set the write-protect on a file.

- 1. Press (Entry keys) or turn the rotary knob to move the cursor to the file number you wish to set write-protect on.
- 2. Press F5 (Write Protect).
- 3. Every time F5 (Write Protect) is pressed, write-protect is set to On


or Off, alternatively.

## 3.14.4 Recalling parameters (Recall)

To recall the saved parameters, display the Recall Parameter screen at first by the following procedures.

Insert a memory card into the memory-card insertion slot, and then perform the followings.

- 1. Press Recall .
- 2. Press [F2] (Display Dir.).



- 1. Press (Entry keys) or turn the rotary knob to move the cursor and select a file No.
  - Or, press F3 (File No.) to open the setting window, and input a file No. using the numeric keypad.
- 2. Press [Set] (Entry key).
- 3. When a confirmation window opens, select "Yes" and press [Set].

When this procedure is completed, the screen returns to the Setup Common Parameter screen.

# Section 4 Performance Test

This section provides explanation of the performance test for the wireless LAN measurement function of the MS268xA Spectrum Analyzer on which the MX268x30A Wireless LAN Measurement Software and MS860xA Digital Mobile Radio Transmitter Tester on which the MX860x30A Wireless LAN Measurement Software is installed.

Refer to the MS268xA/MS860xA Operation Manual for performance test procedures on its spectrum analyzer function.

| 4.1 | When                                   | Performance Test Is Required | 4-2 |
|-----|----------------------------------------|------------------------------|-----|
| 4.2 | List of Equipment for Performance Test |                              |     |
| 4.3 | Performance Test                       |                              | 4-4 |
|     | 4.3.1                                  | Frequency Accuracy           | 4-4 |
|     | 4.3.2                                  | RF Power Accuracy            | 4-8 |

## 4.1 When Performance Test Is Required

The performance test is implemented as part of the preventive maintenance against performance deterioration when the MX268\*30A Wireless LAN Measurement Software is installed on the MS268\*A Spectrum Analyzer or MX860\*30A Wireless LAN Measurement Software is installed on the MS860\*A Digital Mobile Radio Transmitter. The performance test should be implemented on the MS268\*A and MX268\*30A, MS860\*A and MX860\*30A when necessary, for example, at incoming acceptance inspection, regular inspection, and post-repair performance check.

Be sure to periodically implement performance test items deemed important as preventive maintenance. The periodical tests should be implemented about once or twice a year.

Implement the following performance test items:

- Frequency accuracy
- RF power accuracy

If you find an item that does not meet specifications during the performance test, please contact the service division of Anritsu.

# 4.2 List of Equipment for Performance Test

| Test item             | Name                    | Recommended model | Required per-<br>formance |
|-----------------------|-------------------------|-------------------|---------------------------|
|                       | Vector Signal Generator | E4438C            | Up to 6 GHz               |
| Fragueran             | Power Meter             | ML2437A           |                           |
| Frequency<br>accuracy | Power Sensor            | MA2422B           | Thermal type, up to 6 GHz |
|                       | 3 dB Fixed Attenuator   | MP721A            |                           |
|                       | Vector Signal Generator | E4438C            | Up to 6 GHz               |
| RF power              | Power Meter             | ML2437A           |                           |
| RF power accuracy     | Power Sensor            | MA2422B           | Thermal type, up to 6 GHz |
|                       | 3 dB Fixed Attenuator   | MP721A            |                           |

## 4.3 Performance Test

Warm up the DUT and measuring equipment for at least 30 minutes unless otherwise specified. We recommend that you pay attention to the following conditions to ensure maximum measurement accuracy:

- Room temperature
- Minimum AC voltage fluctuations
- · Any noise, vibration, dust, humidity or other problems

## 4.3.1 Frequency Accuracy

(1) Specifications

Frequencies: MX268130A

2 to 2.5 GHz (IEEE802.11a, HiperLAN2, HiSWANa)

2.4 to 2.5 GHz (IEEE802.11b, IEEE802.11g)

MX268330A/MX268730A/MX860830A/MX860930A 4.9 to 6.0 GHz (IEEE802.11a, HiperLAN2, HiSWANa)

2.4 to 2.5 GHz (IEEE802.11b, IEEE802.11g)

Level: -10 dBm

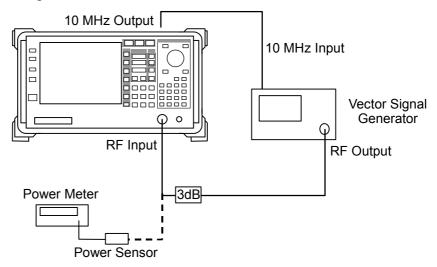
Average count: 30

IEEE802.11a, HiperLAN2, HiSWANa

±500 Hz + (Set frequency × Reference frequency oscillator accuracy)

IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)

±200 Hz + (Set frequency × Reference frequency oscillator accuracy)


IEEE802.11g (ERP-OFDM), IEEE802.11g (DSSS-OFDM)

±500 Hz + (Set frequency × Reference frequency oscillator accuracy)

#### (2) Measuring instruments used in testing

| Name                    | Recommended model |
|-------------------------|-------------------|
| Vector Signal Generator | E4438C            |
| Power Meter             | ML2437A           |
| Power Sensor            | MA2422B           |
| 3 dB Fixed Attenuator   | MP721A            |

#### (3) Setup



#### (4) Test procedure

Step

| 1. | The following shows an example of operations to be car-  |
|----|----------------------------------------------------------|
|    | ried out if the target system is IEEE802.11a. For other  |
|    | systems, carry out the operation according to this exam- |
|    | ple.                                                     |

Operation

- 2. Load waveform data conforming to OFDM-64QAM in IEEE802.11a to the arbitrary signal generator.
- 3. Set the frequency of the arbitrary signal generator to 4.91 GHz.
- 4. Connect the 3 dB fixed attenuator to the power sensor. Measure the output level of the vector signal generator. Adjust the output level of the vector signal generator so that the power within burst is -10 dBm considering burst on/off ratio of output signals for arbitrary signal generator.
- 5. Connect the 3 dB fixed attenuator to the RF Input on the analyzer.
- 6. Initialize the analyzer. Then set as follows:

Target system: IEEE802.11a

Reference level: -10 dBm

Frequency: 4.91 GHz

Modulation method: OFDM-64QAM

Transmission rate: 54 MHz Measuring Object: Burst

Pre-amplifier: Off No Trace screen

Storage mode: Average Averaging count: 30

7. Press the Single key to perform frequency measurement.
The frequency accuracy is obtained as follows:
(Frequency accuracy) = (Measured frequency) - (Set frequency)

## Step Operation

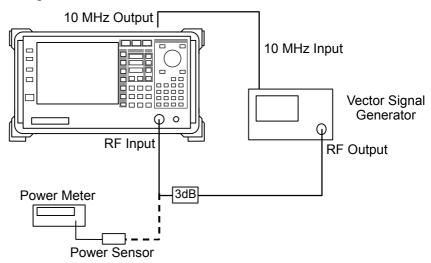
8. Measure the frequency accuracy while varying the target systems and frequencies as shown in the table below.

#### MX268130A

| Target system                 | Modulation | Frequency (GHz) | Min.<br>value | Measured result | Max.<br>value |
|-------------------------------|------------|-----------------|---------------|-----------------|---------------|
|                               | OFDM-64QAM | 2.412           | -500<br>Hz    | Hz              | +500 Hz       |
| IEEE802.11a                   |            | 2.437           |               | Hz              |               |
|                               |            | 2.483           |               | Hz              |               |
|                               | OFDM-64QAM | 2.412           | -500<br>Hz    | Hz              | +500 Hz       |
| HiperLAN2                     |            | 2.437           |               | Hz              |               |
|                               |            | 2.483           |               | Hz              |               |
|                               | OFDM-64QAM | 2.412           | -500<br>Hz    | Hz              | +500 Hz       |
| HiSWANa                       |            | 2.437           |               | Hz              |               |
|                               |            | 2.483           |               | Hz              |               |
|                               | CCK-11MHz  | 2.412           | -200<br>Hz    | Hz              | +200 Hz       |
| IEEE802.11b                   |            | 2.437           |               | Hz              |               |
|                               |            | 2.483           | 112           | Hz              |               |
| IDDD000.11                    | OFDM-64QAM | 2.412           | -500<br>Hz    | Hz              | +500 Hz       |
| IEEE802.11g<br>(ERP-OFDM)     |            | 2.437           |               | Hz              |               |
| (EIII Orbin)                  |            | 2.483           |               | Hz              |               |
| IDDD000.11                    | OFDM-64QAM | 2.412           | -500<br>Hz    | Hz              | +500 Hz       |
| IEEE802.11g<br>(DSSS-OFDM)    |            | 2.437           |               | Hz              |               |
| (DOOD OI DIVI)                |            | 2.483           |               | Hz              |               |
| IDDD000.11                    | CCK-11MHz  | 2.412           | -200<br>Hz    | Hz              | +200 Hz       |
| IEEE802.11g<br>(ERP-DSSS/CCK) |            | 2.437           |               | Hz              |               |
| (EIII DOSS/CCIX)              |            | 2.483           | 112           | Hz              |               |

### MX268330A/MX268730A/MX860830A/MX860930A

| Target system                 | Modulation | Frequency (GHz) | Min.<br>value | Measured result | Max.<br>value         |  |
|-------------------------------|------------|-----------------|---------------|-----------------|-----------------------|--|
|                               |            | 4.91            | ~00           | Hz              |                       |  |
| IEEE802.11a                   | OFDM-64QAM | 5.23            | -500 Hz       | Hz              | $\pm 500~\mathrm{Hz}$ |  |
|                               |            | 5.805           | 112           | Hz              |                       |  |
|                               |            | 4.91            |               | Hz              |                       |  |
| HiperLAN2                     | OFDM-64QAM | 5.23            | -500 Hz       | Hz              | $+500~\mathrm{Hz}$    |  |
|                               |            | 5.805           | 112           | Hz              |                       |  |
|                               |            | 4.91            |               | Hz              |                       |  |
| HiSWANa                       | OFDM-64QAM | 5.23            | -500<br>Hz    | Hz              | $+500~\mathrm{Hz}$    |  |
|                               |            | 5.805           |               | Hz              |                       |  |
|                               | CCK-11MHz  | 2.412           | -200<br>Hz    | Hz              | +200 Hz               |  |
| IEEE802.11b                   |            | 2.437           |               | Hz              |                       |  |
|                               |            | 2.483           |               | Hz              |                       |  |
| IDDD000.44                    |            | 2.412           | ~00           | Hz              |                       |  |
| IEEE802.11g<br>(ERP-OFDM)     | OFDM-64QAM | 2.437           | -500 Hz       | Hz              | $\pm 500~\mathrm{Hz}$ |  |
| (ERT OFDM)                    |            | 2.483           | 112           | Hz              |                       |  |
| IDDD000.44                    |            | 2.412           | <b>~</b> 00   | Hz              |                       |  |
| IEEE802.11g<br>(DSSS-OFDM)    | OFDM-64QAM | 2.437           | -500 Hz       | Hz              | +500 Hz               |  |
|                               |            | 2.483           | 112           | Hz              |                       |  |
|                               |            | 2.412           |               | Hz              |                       |  |
| IEEE802.11g<br>(ERP-DSSS/CCK) | CCK-11MHz  | 2.437           | -200 Hz       | Hz              | +200 Hz               |  |
| (EW DOOM COK)                 |            | 2.483           | 112           | Hz              |                       |  |


### 4.3.2 RF Power Accuracy

```
(1) Specifications
    IEEE802.11a, HiperLAN2, HiSWANa
    MX268130A
        \pm 1.7 dB (2 to 2.5 GHz, -18 to 0 dBm, Average count: 30)
        ±2.0 dB (2 to 2.5 GHz, -38 to 0 dBm, Pre-amplifier: On, Aver-
        age count: 30)
    MX268330A
        \pm 2.7 dB (4.9 to 6 GHz, -18 to 0 dBm, Average count: 30)
    MX268730A
        \pm 2.9 \text{ dB} (4.9 to 6 GHz, -26 \text{ to } 0 \text{ dBm}, Average count: 30)
    MX860830A
        ±2.7 dB (4.9 to 6 GHz, -18 to 0 dBm, Average count: 30, Low
        power input)
    MX860930A
        \pm 2.7 dB (4.9 to 6 GHz, -18 to 0 dBm, Average count: 30)
    IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK),
    IEEE802.11g (ERP-OFDM), IEEE802.11g (DSSS-OFDM)
    MX268130A
        ±1.7 dB (2.4 to 2.5 GHz, -18 to 0 dBm, Average count: 30)
        ±2.0 dB (2.4 to 2.5 GHz, -38 to 0 dBm, Pre-amplifier: On, Av-
        erage count: 30)
    MX268330A
        \pm 1.7 dB (2.4 to 2.5 GHz, -18 to 0 dBm, Average count: 30)
        ±2.0 dB (2.4 to 2.5 GHz, -38 to 0 dBm, Pre-amplifier: On, Av-
        erage count: 30)
    MX268730A
        \pm 1.9 dB (2.4 to 2.5 GHz, -26 to 0 dBm, Average count: 30)
    MX860830A
        ±1.7 dB (2.4 to 2.5 GHz, -18 to 0 dBm, Average count: 30, Low
        power input)
        ±2.0 dB (2.4 to 2.5 GHz, -38 to 0 dBm, Pre-amplifier: On, Av-
        erage count: 30, Low power input)
    MX860930A
        \pm 1.7 dB (2.4 to 2.5 GHz, -18 to 0 dBm, Average count: 30)
        ±2.0 dB (2.4 to 2.5 GHz, -38 to 0 dBm, Pre-amplifier: On, Av-
        erage count: 30)
```

### (2) Measuring instruments used in testing

| Name                    | Recommended model |
|-------------------------|-------------------|
| Vector Signal Generator | E4438C            |
| Power Meter             | ML2437A           |
| Power Sensor            | MA2422B           |
| 3dB Fixed Attenuator    | MP721A            |

### (3) Setup



### (4) Test procedure

| Step | Operation                                                                                                                                                                                                                                                                                       |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.   | The following shows an example of operation to be carried out if the target system is IEEE802.11a. For other systems, carry out the operation according to this example.                                                                                                                        |
| 2.   | Load waveform data conforming to OFDM-64QAM in IEEE802.11a to the arbitrary signal generator.                                                                                                                                                                                                   |
| 3.   | Set the frequency of the vector signal generator to 5.23 GHz.                                                                                                                                                                                                                                   |
| 4.   | Connect the 3 dB fixed attenuator to the power sensor. Measure the output level of the vector signal generator. Adjust the output level of the vector signal generator so that the power within burst is 0 dBm considering burst on/off ratio of output signals of for vector signal generator. |
| 5.   | Connect the 3 dB fixed attenuator to the RF Input on the analyzer.                                                                                                                                                                                                                              |

| Step | Operation                                                  |  |  |  |  |  |
|------|------------------------------------------------------------|--|--|--|--|--|
| 6.   | Initialize the analyzer. Then set as follows:              |  |  |  |  |  |
|      | Target system: IEEE802.11a                                 |  |  |  |  |  |
|      | Reference level: 0 dBm                                     |  |  |  |  |  |
|      | Frequency: 5.23 GHz                                        |  |  |  |  |  |
|      | Modulation method: OFDM-64QAM                              |  |  |  |  |  |
|      | Transmission rate: 54 MHz                                  |  |  |  |  |  |
|      | Measuring Object: Burst                                    |  |  |  |  |  |
|      | Pre-amplifier: Off                                         |  |  |  |  |  |
|      | RF Power screen                                            |  |  |  |  |  |
|      | Storage mode: Average                                      |  |  |  |  |  |
|      | Averaging count: 30                                        |  |  |  |  |  |
| 7.   | If the output level of the vector signal generator and the |  |  |  |  |  |

- 7. If the output level of the vector signal generator and the reference level of the analyzer do not match, set the reference level of the analyzer to the nearest value that is greater than the output level of the signal generator.
- 8. Press the Single key to perform measurement. The Tx Power (dBm) is obtained as follows:
  (Level accuracy) = (Measured level) (Set level)
- 9. Measure the level accuracy while varying the target systems and levels as shown in the table below.
  Turn on the pre-amplifier, if installed, during measurement.

### MX268130A

| Target system | Frequency<br>(GHz) | Pre-<br>amplifier | Level<br>(dBm) | Min.<br>value   | Measured result | Max.<br>value       | Measurement uncertainty |  |    |  |  |
|---------------|--------------------|-------------------|----------------|-----------------|-----------------|---------------------|-------------------------|--|----|--|--|
|               |                    |                   | 0              |                 | dB              |                     |                         |  |    |  |  |
|               |                    | Off               | -10            | $-1.28~{ m dB}$ | dB              | $+1.28~\mathrm{dB}$ | $\pm 0.42~\mathrm{dB}$  |  |    |  |  |
| IEEE802.11a   | 2.437              |                   | -18            |                 | dB              |                     |                         |  |    |  |  |
| TEEE002.11a   | 2.407              |                   | 0              | -1.58 dB        | dB              | +1.58 dB            | $\pm 0.42~\mathrm{dB}$  |  |    |  |  |
|               |                    | On                | -18            |                 | dB              |                     |                         |  |    |  |  |
|               |                    |                   | -38            | -1.64 dB        | dB              | +1.64 dB            | $\pm 0.36~\mathrm{dB}$  |  |    |  |  |
|               | 0.405              |                   |                |                 |                 |                     | 0                       |  | dB |  |  |
| HiSWANa       |                    | Off               | -10            | -1.28 dB        | dB              | +1.28 dB            | ±0.42 dB                |  |    |  |  |
|               |                    |                   | -18            |                 | dB              |                     |                         |  |    |  |  |
|               | 2.437              |                   | 0              | _1 #0 JD        | dB              | +1.58 dB            | +0.49 dD                |  |    |  |  |
|               |                    | On                | -18            | −1.58 dB        | dB              | ± 1.98 ab           | $\pm 0.42~\mathrm{dB}$  |  |    |  |  |
|               |                    |                   | -38            | -1.64 dB        | dB              | +1.64 dB            | $\pm 0.36~\mathrm{dB}$  |  |    |  |  |

### MX268130A (Cont'd)

| Target system            | Frequency<br>(GHz) | Pre-<br>amplifier | Level<br>(dBm) | Min.<br>value        | Measured result | Max.<br>value       | Measurement uncertainty |  |     |     |           |
|--------------------------|--------------------|-------------------|----------------|----------------------|-----------------|---------------------|-------------------------|--|-----|-----|-----------|
|                          |                    |                   | 0              | -1.28 dB             | dB              |                     |                         |  |     |     |           |
|                          |                    | Off               | -10            |                      | dB              | $+1.28~\mathrm{dB}$ | $\pm 0.42~\mathrm{dB}$  |  |     |     |           |
| HiperLAN2                | 2.437              |                   | -18            |                      | dB              |                     |                         |  |     |     |           |
| ImperLAN2                | 2.407              |                   | 0              | $-1.58  \mathrm{dB}$ | dB              | $+1.58~\mathrm{dB}$ | $\pm 0.42~\mathrm{dB}$  |  |     |     |           |
|                          |                    | On                | -18            | 1.00 ub              | dB              | 1.00 uD             | ±0.42 uD                |  |     |     |           |
|                          |                    |                   | -38            | -1.64  dB            | dB              | +1.64 dB            | $\pm 0.36~\mathrm{dB}$  |  |     |     |           |
|                          |                    |                   | 0              |                      | dB              |                     |                         |  |     |     |           |
|                          |                    | Off               | -10            | -1.28  dB            | dB              | $+1.28~\mathrm{dB}$ | $\pm 0.42~\mathrm{dB}$  |  |     |     |           |
| IEEE802.11b              | 2.437              |                   | -18            |                      | dB              |                     |                         |  |     |     |           |
| 1222002.110              | 2.101              |                   | 0              | $-1.58  \mathrm{dB}$ | dB              | +1.58 dB            | $\pm 0.42~\mathrm{dB}$  |  |     |     |           |
|                          |                    | On                | -18            |                      | dB              | 1.00 aB             | = 0.12 ub               |  |     |     |           |
|                          |                    |                   | -38            | -1.64 dB             | dB              | +1.64 dB            | $\pm 0.36~\mathrm{dB}$  |  |     |     |           |
|                          | 2.437              | Off               | 0              | -1.28 dB             | dB              | +1.28 dB            |                         |  |     |     |           |
| IDDE000 11               |                    |                   | -10            |                      | dB              |                     | $\pm 0.42~\mathrm{dB}$  |  |     |     |           |
| IEEE802.11g<br>(ERP-OFDM |                    |                   | -18            |                      | dB              |                     |                         |  |     |     |           |
| )                        | 2.13.              |                   | 0              | -1.58 dB             | dB              | +1.58 dB            | $\pm 0.42~\mathrm{dB}$  |  |     |     |           |
|                          |                    |                   | -18            |                      | dB              |                     | 1000                    |  |     |     |           |
|                          |                    |                   | -38            | -1.64 dB             | dB              | +1.64 dB            | ±0.36 dB                |  |     |     |           |
|                          |                    |                   |                | 0.00                 | 0               |                     | dB                      |  |     |     |           |
| IEEE802.11g              |                    |                   |                |                      |                 |                     |                         |  | Off | -10 | -1.28  dB |
| (DSSS-OFD                | 2.437              |                   | -18            |                      | dB              |                     |                         |  |     |     |           |
| M)                       |                    |                   | 0              | -1.58 dB             | dB              | +1.58 dB            | $\pm 0.42~\mathrm{dB}$  |  |     |     |           |
|                          |                    | On                | -18            | 1 0 / ID             | dB              | 1 0 4 ID            | L 0 00 1D               |  |     |     |           |
|                          |                    |                   | -38            | -1.64 dB             | dB              | +1.64 dB            | ±0.36 dB                |  |     |     |           |
| IEEE802.11g              |                    | 0.00              | 0              | 1 00 ID              | dB              | 1 00 ID             | L 0. 40. ID             |  |     |     |           |
|                          |                    | Off               | <u>-10</u>     | -1.28  dB            | dB              | +1.28 dB            | $\pm 0.42~\mathrm{dB}$  |  |     |     |           |
| (ERP-DSSS/               | 2.437              |                   | -18            |                      | dB              |                     |                         |  |     |     |           |
| CCK)                     |                    |                   | 0              | -1.58  dB            | dB              | $+1.58~\mathrm{dB}$ | $\pm 0.42~\mathrm{dB}$  |  |     |     |           |
|                          |                    | On                | <u>-18</u>     | 1.04.15              | dB              | 110115              | L 0.00 ID               |  |     |     |           |
|                          |                    |                   | -38            | -1.64  dB            | dB              | +1.64 dB            | $\pm 0.36~\mathrm{dB}$  |  |     |     |           |

### MX268330A/MX860830A/MX860930A

| Target<br>system                  | Frequency<br>(GHz) | Pre-<br>amplifier | Level<br>(dBm) | Min.<br>value        | Measured result | Max.<br>value          | Measurement uncertainty |
|-----------------------------------|--------------------|-------------------|----------------|----------------------|-----------------|------------------------|-------------------------|
|                                   |                    |                   | 0              | -2.16 dB             | dB              |                        |                         |
| IEEE802.11a                       | 5.23               |                   | -10            |                      | dB              | $\pm 2.16~\mathrm{dB}$ | $\pm 0.54~\mathrm{dB}$  |
|                                   |                    |                   | -18            |                      | dB              |                        |                         |
|                                   |                    |                   | 0              |                      | dB              |                        |                         |
| HiSWANa                           | 5.23               |                   | -10            | $-2.16~\mathrm{dB}$  | dB              | $+2.16~\mathrm{dB}$    | $\pm 0.54~\mathrm{dB}$  |
|                                   |                    |                   | -18            |                      | dB              |                        |                         |
|                                   |                    |                   | 0              |                      | dB              |                        |                         |
| HiperLAN2                         | 5.23               |                   | -10            | $-2.16~\mathrm{dB}$  | dB              | $+2.16~\mathrm{dB}$    | $\pm 0.54~\mathrm{dB}$  |
|                                   |                    |                   | -18            |                      | dB              |                        |                         |
|                                   |                    |                   | 0              |                      | dB              |                        |                         |
|                                   |                    | Off               | -10            | -1.28  dB            | dB              | $+1.28~\mathrm{dB}$    | $\pm 0.42~\mathrm{dB}$  |
| IEEE802.11b                       | 2.437              |                   | -18            |                      | dB              |                        |                         |
| 1222002.115                       | 2.401              |                   | 0              | -1.58 dB             | dB              | +1.58 dB               | $\pm 0.42~\mathrm{dB}$  |
|                                   |                    | On                | -18            |                      | dB              |                        |                         |
|                                   |                    |                   | -38            | -1.64  dB            | dB              | +1.64 dB               | $\pm 0.36~\mathrm{dB}$  |
|                                   |                    | Off               | 0              | −1.28 dB<br>−1.58 dB | dB              |                        |                         |
| IEEE802.11g                       |                    |                   | -10            |                      | dB              | +1.28 dB               | $\pm 0.42~\mathrm{dB}$  |
| (ERP-OFDM                         | 2.437              |                   | -18            |                      | dB              |                        |                         |
| )                                 |                    |                   | 0              |                      | dB              | +1.58 dB               | $\pm 0.42~\mathrm{dB}$  |
|                                   |                    | On                | -18            |                      | dB              |                        |                         |
|                                   |                    |                   | -38            | -1.64  dB            | dB              | +1.64 dB               | ±0.36 dB                |
|                                   |                    | 0.00              | 0              | 15                   | dB              |                        |                         |
| IEEE802.11g                       |                    | Off               | -10            | -1.28  dB            | dB              | +1.28 dB<br>+1.58 dB   | $\pm 0.42~\mathrm{dB}$  |
| (DSSS-OFD                         | 2.437              |                   | -18            |                      | dB              |                        |                         |
| M)                                |                    |                   | 0              | $-1.58  \mathrm{dB}$ | dB              |                        | $\pm 0.42~\mathrm{dB}$  |
|                                   |                    | On                | -18            | 1 04 ID              | dB              | 1 04 ID                | 1 0 00 1D               |
| IEEE802.11g<br>(ERP-DSSS/<br>CCK) |                    |                   | -38            | -1.64 dB             | dB              | +1.64 dB               | ±0.36 dB                |
|                                   |                    | 0.00              | 0              | -1.28 dB             | dB              | +1.28 dB               | $\pm 0.42~\mathrm{dB}$  |
|                                   |                    | Off               | <del>-10</del> |                      | dB              |                        |                         |
|                                   | 2.437              |                   | -18            |                      | dB              |                        |                         |
|                                   |                    |                   | 0              | $-1.58~{ m dB}$      | dB              | +1.58 dB               | $\pm 0.42~\mathrm{dB}$  |
|                                   |                    |                   | -18            |                      | dB              |                        |                         |
|                                   |                    |                   | -38            | -1.64  dB            | dB              | +1.64 dB               | $\pm 0.36~\mathrm{dB}$  |

### MX268730A

| Target system | Frequency<br>(GHz) | Pre-<br>amplifier | Level<br>(dBm) | Min.<br>value       | Measured result | Max.<br>value       | Measurement uncertainty |
|---------------|--------------------|-------------------|----------------|---------------------|-----------------|---------------------|-------------------------|
|               |                    |                   | -6             |                     | dB              |                     |                         |
| IEEE802.11a   | 5.23               |                   | -16            | -2.36  dB           | dB              | $+2.36~\mathrm{dB}$ | $\pm 0.54~\mathrm{dB}$  |
|               |                    |                   | -26            |                     | dB              |                     |                         |
|               |                    |                   | -6             |                     | dB              |                     |                         |
| HiSWANa       | 5.23               |                   | -16            | $-2.36~\mathrm{dB}$ | dB              | $+2.36~\mathrm{dB}$ | $\pm 0.54~\mathrm{dB}$  |
|               |                    |                   | -26            |                     | dB              |                     |                         |
|               |                    |                   | -6             |                     | dB              |                     |                         |
| HiperLAN2     | 5.23               |                   | -16            | $-2.36~\mathrm{dB}$ | dB              | $+2.36~\mathrm{dB}$ | $\pm 0.54~\mathrm{dB}$  |
|               |                    |                   | -26            |                     | dB              |                     |                         |
|               |                    |                   | -6             | -1.48 dB            | dB              | +1.48 dB            | $\pm 0.42~\mathrm{dB}$  |
| IEEE802.11b   | 2.437              |                   | -16            | 1.40 ub             | dB              | 1.40 ub             | =0.42 uD                |
|               |                    |                   | -26            | -1.54  dB           | dB              | +1.54 dB            | $\pm 0.36~\mathrm{dB}$  |
| IEEE802.11g   |                    |                   | -6             | -1.48 dB            | dB              | +1.48 dB            | $\pm 0.42~\mathrm{dB}$  |
| (ERP-OFDM     | 2.437              |                   | -16            | dB                  |                 | 1.40 uD             | =0.42 uD                |
| )             |                    |                   | -26            | -1.54  dB           | dB              | $+1.54~\mathrm{dB}$ | $\pm 0.36~\mathrm{dB}$  |
| IEEE802.11g   |                    |                   | -6             | -1.48 dB            | dB              | +1.48 dB            | $\pm 0.42~\mathrm{dB}$  |
| (DSSS-OFD     | 2.437              |                   | -16            | 1.40 uD             | dB              | 1.40 ub             | =0.42 uD                |
| M)            |                    |                   | -26            | -1.54 dB            | dB              | +1.54 dB            | $\pm 0.36~\mathrm{dB}$  |
| IEEE802.11g   |                    |                   | -6             | -1.48 dB            | dB              | +1.48 dB            | $\pm 0.42~\mathrm{dB}$  |
| (ERP-DSSS/    | 2.437              |                   | -16            | 1.40 uD             | dB              | 1.40 uD             | ∸0.42 uD                |
| CCK)          |                    |                   | -26            | $-1.54~\mathrm{dB}$ | dB              | $+1.54~\mathrm{dB}$ | $\pm 0.36~\mathrm{dB}$  |

MX268130A/330A/730A/
MX860830A/930A
Wireless LAN Measurement Software
(for MS2681A/MS2683A/MS2687A/
MS2687B/MS8608A/MS8609A)
Operation Manual
(Remote Control)

# **Table of Contents**

| Secti | on 1 General                                    | 1-1  |
|-------|-------------------------------------------------|------|
| 1.1   | General                                         | 1-2  |
| Secti | on 2 Connecting Device                          | 2-1  |
| 2.1   | Connecting an External Device with              |      |
|       | an RS-232C Cable                                | 2-2  |
| 2.2   | Connection Diagram of RS-232C Interface Signals | 2-3  |
| 2.3   | Connecting a Device with a GPIB Cable           | 2-4  |
| 2.4   | Setting the GPIB Address                        | 2-5  |
| Secti | on 3 Device Message Format                      | 3-1  |
| 3.1   | General Description                             | 3-2  |
|       |                                                 |      |
| Secti | on 4 Status Structure                           | 4-1  |
| 4.1   | IEEE488.2 Standard Status Model                 | 4-2  |
| 4.2   | Status Byte (STB) Register                      | 4-4  |
| 4.3   | Service Request (SRQ) Enabling Operation        | 4-7  |
| 4.4   | Standard Event Status Register                  | 4-8  |
| 4.5   | Extended Event Status Register                  | 4-10 |
| 4.6   | Synchronizing MS2681A/MS2683A/MS2687A/MS2687B   |      |
|       | with a Controller                               | 4-13 |
| Secti | on 5 Initial Settings                           | 5-1  |
| 5.1   | Bus Initialization Using the IFC Statement      | 5-3  |
| 5.2   | Initialization for Message Exchange by DCL and  |      |
| -     | SDC Bus Commands                                | 5-4  |
| 5.3   | Device Initialization Using the *RST Command    | 5-6  |
| 5.4   | Device Initialization Using the INI/IP Command  | 5-7  |
| 5.5   | Device Status at Power-on                       | 5-8  |

| Section | on 6 Command List                                 | 6-1  |
|---------|---------------------------------------------------|------|
| 6.1     | List of Commands on Each Measurement Screen       | 6-2  |
| 6.2     | Commands Commonly Used on All Measurement         |      |
|         | Screens                                           | 6-3  |
| 6.3     | Setup Common Parameter                            | 6-7  |
| 6.4     | Modulation Analysis                               | 6-10 |
| 6.5     | RF Power                                          | 6-17 |
| 6.6     | Occupied Bandwidth                                | 6-20 |
| 6.7     | Adjacent Channel Power                            | 6-23 |
| 6.8     | Spectrum Mask                                     | 6-27 |
| 6.9     | Spurious Emission                                 | 6-31 |
| 6.10    | CCDF                                              | 6-39 |
| 6.11    | Symbol Rate Error                                 | 6-41 |
| 6.12    | Chip Clock Error                                  | 6-43 |
| 6.13    | IQ Level                                          | 6-45 |
| 6.14    | Power Meter                                       | 6-46 |
| 6.15    | Batch Measurement                                 | 6-47 |
| Section | on 7 Detailed Explanation of                      |      |
|         | Commands                                          | 7-1  |
| 7.1     | Detailed Explanation of External Control Commands |      |
|         | in Alphabetical Order                             | 7-5  |

# Section 1 General

This section outlines the remote control and gives examples of system upgrades.

| 1.1 | Gener | al                                 | 1-2 |
|-----|-------|------------------------------------|-----|
|     | 1.1.1 | Remote control functions           | 1-2 |
|     | 1.1.2 | Interface port selection functions | 1-2 |
|     | 1.1.3 | Examples of system upgrades using  |     |
|     |       | RS-232C and GPIB                   | 1-3 |
|     | 1.1.4 | Specifications of RS-232C          | 1-4 |
|     | 1.1.5 | Specifications of GPIB             | 1-5 |

### 1.1 General

The MS2681A/MS2683A/MS2687A/MS2687B, when combined with an external controller (host computer, personal computer, etc.), can automate your measurement system. For this purpose, the MS2681A/MS2683A/MS2687A/MS2687B is equipped with an RS-232C interface port, and GPIB interface bus (IEEE std 488.2-1987) as standard compositions.

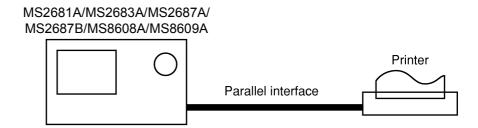
Ethernet interface can be also installed as an option.

### 1.1.1 Remote control functions

The remote control functions of the MS2681A/MS2683A/MS2687A/MS2687B are used to do the following:

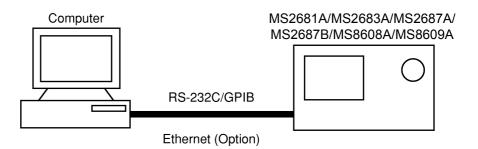
- (1) Control all functions except a few like the power switch and [LO-CAL] key
- (2) Read all parameter settings.
- (3) Set the RS-232C interface settings from the panel.
- (4) Set the GPIB address from the panel.
- (5) Set the IP address for Ethernet interface from the panel. (Optional)
- (6) Select the interface port from the panel.
- (7) Configure the automatic measurement system when the spectrum analyzer function is combined with a personal computer and other measuring instruments.

### 1.1.2 Interface port selection functions


The MS2681A/MS2683A/MS2687A/MS2687B Spectrum Analyzer function has the standard RS-232C interface, GPIB interface bus and parallel (Centronics) interface. It can also have Ethernet interface as an option. Use the panel to select the interface port to be used to connect external devices as shown below.

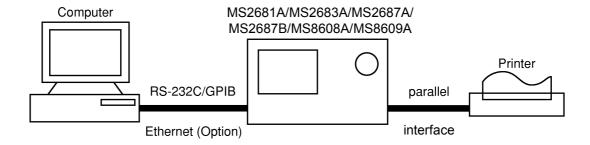
Port for the external controller: Select RS-232C, GPIB or Ethernet (Option). Port for the printer: Parallel interface.

### 1.1.3 Examples of system upgrades using RS-232C and GPIB


### (1) Stand-alone type 1

Waveforms measured with MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A are output to the printer.




### (2) Control by the host computer (1)

The spectrum analyzer is controlled automatically or remotely from the computer.



### (3) Control by the host computer (2)

The waveforms measured by controlling analyzer automatically or remotely from the computer are output to the printer.



# 1.1.4 Specifications of RS-232C

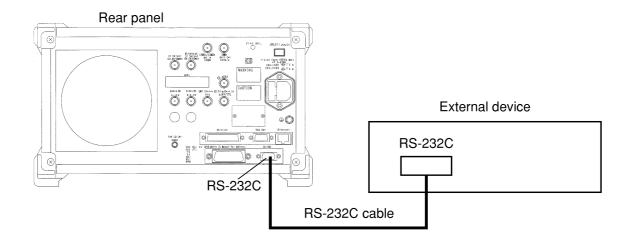
The table below lists the specifications of the RS-232C provided as standard in MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A.

| Item                         | Specification                                                  |
|------------------------------|----------------------------------------------------------------|
| Function                     | Control from the external controller (except for power-ON/OFF) |
| Communication system         | Asynchronous (start-stop synchronous system), half-duplex      |
| Communication control system | X-ON/OFF control                                               |
| Baud rate                    | 1200, 2400, 4800, 9600, 19.2 k,<br>38.4 k, 56 k, 115 k (bps)   |
| Data bits                    | 7 or 8 bits                                                    |
| Parity                       | Odd number (ODD), even number (EVEN), none (NON)               |
| Start bit                    | 1 bit                                                          |
| Stop bit (bits)              | 1 or 2 bits                                                    |
| Connector                    | D-sub 9-pin, male                                              |

# 1.1.5 Specifications of GPIB

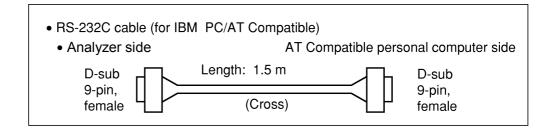
The table below lists the specifications of the GPIB provided for MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A.

| Item            |                            | pecification and supplementary explanation                                                                                |  |
|-----------------|----------------------------|---------------------------------------------------------------------------------------------------------------------------|--|
| Function        | Conforms to IEEE488.2      |                                                                                                                           |  |
|                 | The s                      | The spectrum analyzer is controlled from the external                                                                     |  |
|                 | contro                     | ontroller                                                                                                                 |  |
|                 | (except for power-on/off). |                                                                                                                           |  |
| Interface func- | SH1:                       | All source handshake functions are provided.                                                                              |  |
| tion (*1)       |                            | Synchronizes the timing of data transmission.                                                                             |  |
|                 | AH1:                       | All acceptor handshake functions are provided.                                                                            |  |
|                 |                            | Synchronizes the timing of data reception.                                                                                |  |
|                 | T6:                        | The basic talker functions and serial poll                                                                                |  |
|                 |                            | function are provided. The talk only function                                                                             |  |
|                 |                            | is not provided. The talker can be canceled by MLA.                                                                       |  |
|                 | L4:                        | The basic listener functions are provided. The listen only function is not provided. The listener can be canceled by MTA. |  |
|                 | SR1:                       | All service request and status byte functions are provided.                                                               |  |
|                 | RL1:                       | All remote/local functions are provided.                                                                                  |  |
|                 |                            | The local lockout function is provided.                                                                                   |  |
|                 | PP0:                       | The parallel poll functions are not provided.                                                                             |  |
|                 | DC1:                       | All device clear functions are provided.                                                                                  |  |
|                 | DT1:                       | Device trigger functions are provided.                                                                                    |  |
|                 | C0:                        | System controller functions are not provided.                                                                             |  |
|                 | E2:                        | Output is tri-state.                                                                                                      |  |


# Section 2 Connecting Device

This section describes how to connect external devices such as the host computer, personal computer, and printer with RS-232C and GPIB cables. This section also describes how to setup the interfaces of the analyzer function.

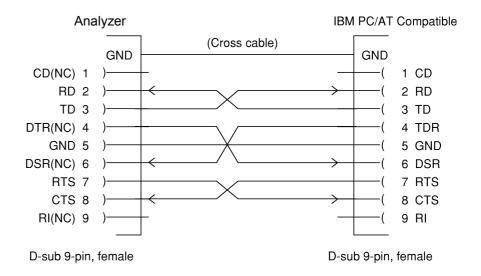
| 2.1 | Connecting an External Device with an           |     |  |  |
|-----|-------------------------------------------------|-----|--|--|
|     | RS-232C Cable                                   | 2-2 |  |  |
| 2.2 | Connection Diagram of RS-232C Interface Signals | 2-3 |  |  |
| 2.3 | Connecting a Device with a GPIB Cable           | 2-4 |  |  |
| 2.4 | Setting the GPIB Address                        | 2-5 |  |  |


# 2.1 Connecting an External Device with an RS-232C Cable

Connect the RS-232C connector (D-sub 9-pin, male) on the rear panel of the Analyzer to the RS-232C connector of the external device with an RS-232C cable.



### Notes:


RS-232C connectors with 9 pins and 25 pins are available. When purchasing the RS-232C cable, check the number of pins on the RS-232C connector of the external device. Also, the following RS-232C cable is provided as peripheral parts of the Analyzer.

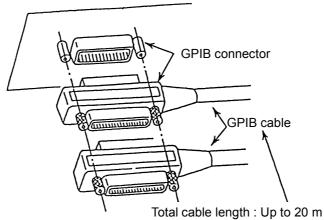


# 2.2 Connection Diagram of RS-232C Interface Signals

The diagram below shows the RS-232C interface signal connections between the Analyzer and devices such as a personal computer.

• Connection with IBM PC/AT Compatible personal computer



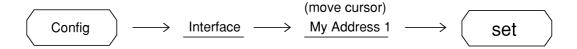

## 2.3 Connecting a Device with a GPIB Cable

Connect the GPIB connector on the rear panel of this equipment to the GPIB connector of an external device with a GPIB cable.

#### Note:

Be sure to connect the GPIB cable before turning the equipment power on.

Up to 15 devices, including the controller, can be connected to one system. Connect devices as shown below:




Cable length between devices : Up to 4 m

Number of devices that can be connected: Up to 15

# 2.4 Setting the GPIB Address

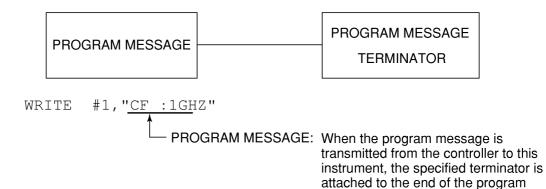
Set the GPIB address of this instrument as follows.



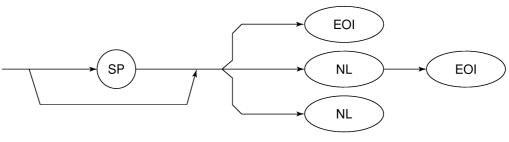
Use the numeric keypad or the rotary knob to enter the GPIB address of this instrument, next press set to confirm address.

# Section 3 Device Message Format

This section describes the format of the device messages transmitted on the bus between a controller (host computer) and the device MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A via the RS-232C GPIB or Ethernet system.


| 3.1 | General Description |                         |     |
|-----|---------------------|-------------------------|-----|
|     | 3.1.1               | Program Message Format  | 3-2 |
|     | 3.1.2               | Response Message Format | 3-7 |

### 3.1 General Description

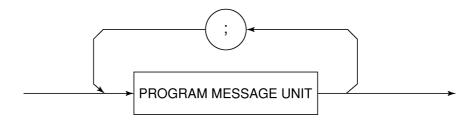

The device messages are data messages transmitted between the controller and devices, program messages transferred from the controller to this instrument (device), and response messages input from this instrument (device) to the controller. There are also two types of program commands and program queries in the program message. The program command is used to set this instrument's parameters and to instruct it to execute processing. The program query is used to query the values of parameters and measured results.

### 3.1.1 Program Message Format

To transfer a program message from the controller program to this instrument using the WRITE statement, the program message formats are defined as follows.



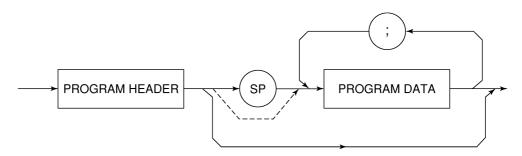
### (1) PROGRAM MESSAGE TERMINATOR




NL: Called New line or LF (Line Feed)

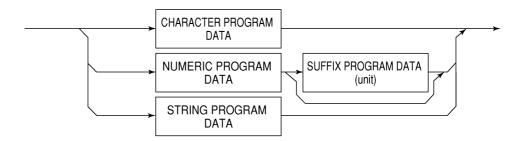
message to terminate its transmission.

Carriage Return (CR) is ignored and is not processed as a terminator.


#### (2) PROGRAM MESSAGE



Multiple program message units can be output sequentially by separating them with a semicolon.


<Example> WRITE #1;"CF 1GHZ;SP 5ØØKHZ

#### (3) PROGRAM MESSAGE UNIT

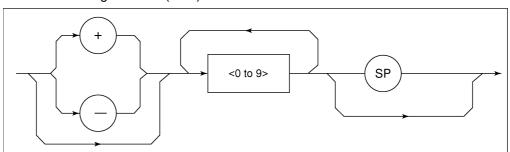


- The program header of an IEEE488.2 common command always begins with an asterisk.
- For numeric program data, the between the header and data can be omitted.
- The program header of a program query always ends with a question mark.

#### (4) PROGRAM DATA

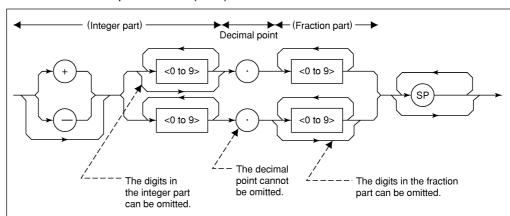


### (5) CHARACTER PROGRAM DATA


Character program data is specific character string data consisting of the uppercase alphabetic characters from A to Z, lowercase alphabetic characters from a to z, numbers 0 to 9, and underline (\_).

<Example> WRITE #1; "ST AUTO" .....Sets Sweep Time to AUTO.

#### (6) NUMERIC PROGRAM DATA


Numeric program data has two types of formats: integer format (NR1) and fixed-point format (NR2).

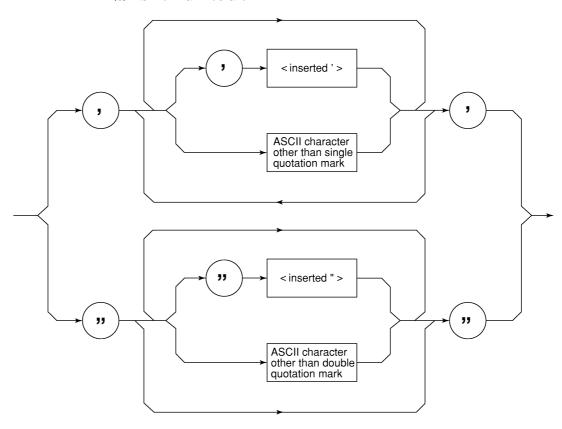
### < Integer format (NR1) >



- Zeros can be inserted at the beginning  $\rightarrow$  005, +000045
- There must be no spaces between a + or sign and a number  $\rightarrow$  +5, + $\triangle$  5 (x)
- Spaces can be inserted after a number  $\rightarrow$  +5 $\triangle$  $\triangle$
- The + sign is optional  $\rightarrow$  +5, 5
- Commas cannot be used to separate digits  $\rightarrow$  1,234,567 (x)

#### < Fixed-point format (NR2) >




- The numeric expression of the integer format applies to the integer part.
- There must be no spaces between numbers and the decimal point  $\rightarrow$  +753 $\triangle$  .123 (x)
- Spaces can be inserted after the digits in the fraction part  $\rightarrow$  +753.123 $\triangle$   $\triangle$
- A number need not be placed before the decimal point  $\rightarrow$  .05
- A + or sign ca be placed before the decimal point  $\rightarrow$  +.05, –.05
- A number can end with a decimal point  $\rightarrow$  12.

### (7) SUFFIX PROGRAM DATA (unit)

The table below lists the suffixes used for MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A.

| Classification    | Unit       | Specification                                     |
|-------------------|------------|---------------------------------------------------|
|                   | GHz        | GHZ, GZ                                           |
|                   | MHz        | MHZ, MZ                                           |
| Frequency         | KHz        | KHZ, KZ                                           |
|                   | Hz         | HZ                                                |
|                   | Default    | HZ                                                |
|                   | second     | S                                                 |
| Time              | m second   | MS                                                |
| Time              | μ second   | US                                                |
|                   | Default    | MS                                                |
|                   | dB         | DB                                                |
|                   | dBm        | DBM, DM                                           |
|                   | dΒμV       | DBUV                                              |
|                   | dBmV       | DBMV                                              |
| Level (dB system) | dBμV (emf) | DBUVE                                             |
|                   | dBμV/m     | DBUVM                                             |
|                   | Default    | Determined in conformance with the set scale unit |
|                   | V          | V                                                 |
| I1 (77t)          | mV         | MW                                                |
| Level (V system)  | μV         | UV                                                |
|                   | Default    | UV                                                |
|                   | W          | M                                                 |
|                   | mW         | MW                                                |
|                   | μW         | UW                                                |
| Level (W system)  | nW         | NW                                                |
|                   | pW         | PW                                                |
|                   | fW         | FW                                                |
|                   | Default    | UW                                                |

### (8) STRING PROGRAM DATA

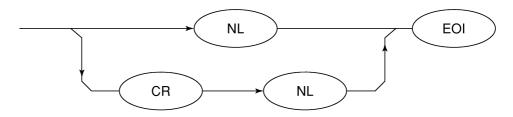


 $\bullet$  String program data must be enclosed with single quotation marks ('...').

WRITE #1:"TITLE'MS2683A'"

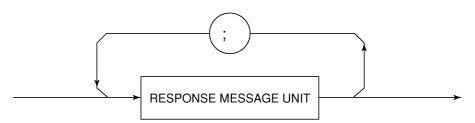
A single quotation mark used within a character string must be repeated as shown in the double quotation marks.

WRITE #1;"TITLE'MS2683A''NOISE MEAS'''"


MS2683A 'NOISE MEAS' is set as the title.

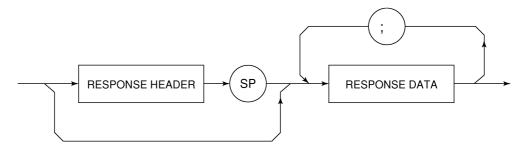
### 3.1.2 Response Message Format

To transfer the response messages from this instrument to the controller using the READ statement, the response message formats are defined as follows:

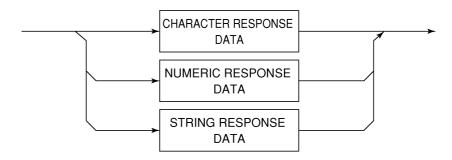



#### (1) RESPONSE MESSAGE TERMINATOR




The response message terminator to be used depends on the TRM command specification.

### (2) RESPONSE MESSAGE

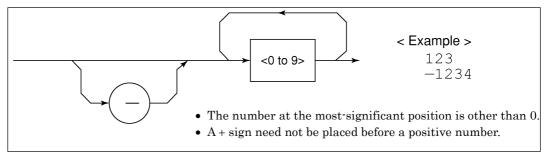



When a query is sent by the WRITE statement with one or more program queries, the response message also consists of one or more response message units.

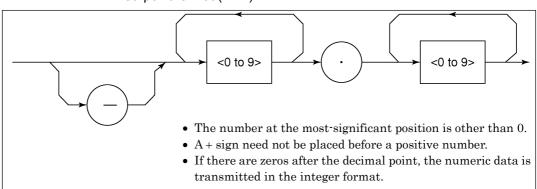
### (3) Usual RESPONSE MESSAGE UNIT



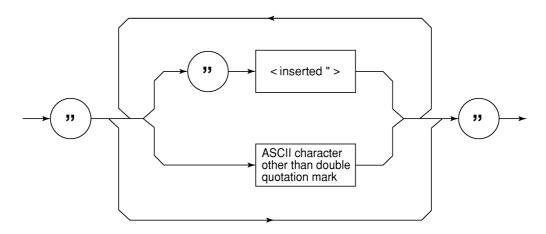
### (4) RESPONSE DATA




### (5) CHARACTER RESPONSE DATA


Character response data is specific character string data consisting of the uppercase alphabetic characters from A to Z, lowercase alphabetic characters from a to z, numbers 0 to 9, and underline ().

### (6) NUMERIC RESPONSE DATA

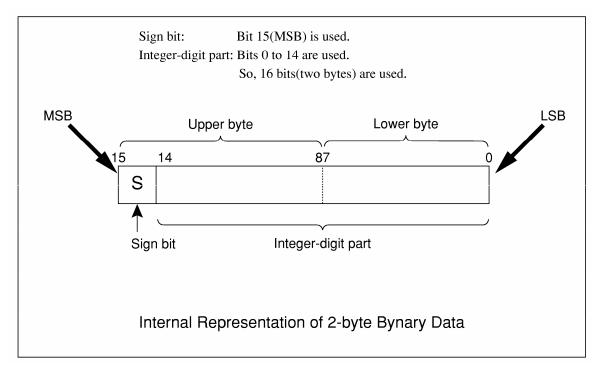

### <Integer format (NR1) >



### <Fixed-point format (NR2) >



### (7) CHARACTER RESPONSE DATA




String response data is transmitted as an ASCII character enclosed with double quotation marks.

(8) Response message for input of waveform data using binary data If waveform data is read out in binary format, the data is output prefixed with # (in ASCII format), the number of characters that indicate the byte length of the data (in ASCII format), and then the byte length of the data (in ASCII format).

The waveform binary data is two-byte 65536 integer data from -32768 to 32767, as shown below; and sent in the sequence of upper byte and lower byte.

| 16-Bit Binary                           | With Sign | No sign |
|-----------------------------------------|-----------|---------|
| 1000000000000000                        | _32768    | 32768   |
| 1000000000000000                        | _32767    | 32769   |
| 1000000000000000                        | _32766    | 32770   |
| 11111111111111101                       | _3        | 65533   |
| 1111111111111110                        | _2        | 65534   |
| 1111111111111111                        | _1        | 65535   |
| 0000000000000000                        | 0         | 0       |
| 0000000000000001                        | 1         | 1       |
| 000000000000000000000000000000000000000 | 2         | 2       |
| 000000000000011                         | 3         | 3       |
| 0111111111111101                        | 32765     | 32765   |
| 0111111111111110                        | 32766     | 32766   |
| 0111111111111111                        | 32767     | 32767   |



† When a negative number is stored in a numeric variable, the sign bit 1 is set in the MSB to indicate the negative value.

The value is stored in a numeric variable in a 2's complement format.

If 16-byte data is read out in binary format, for example, the response data is output as follows:

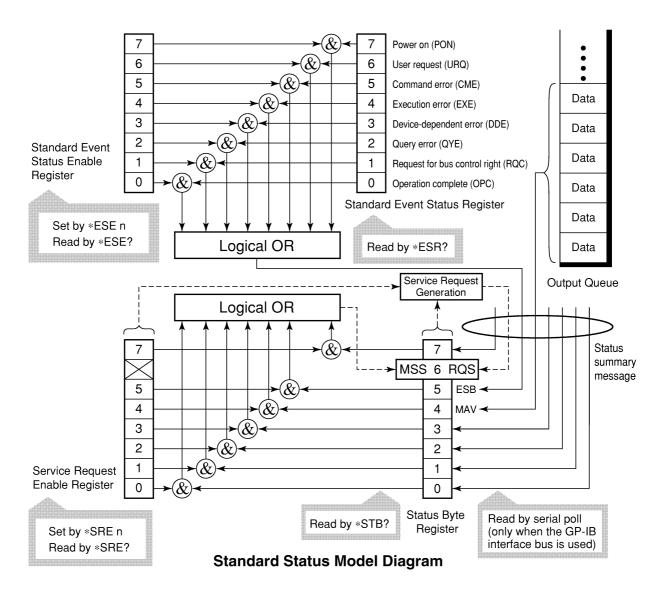
#216<16 bytes of data>

The number 2 following # indicates that two characters that indicate the binary data length follow. The number 16 indicates that 16-byte binary data follows. <16 bytes of data> represents the read 16-byte binary data string.

The specified response message terminator is also added to the response data if waveform data is read out in binary format.

## Section 4 Status Structure

This section describes the device-status reporting and its data structure defined by the IEEE488.2 when the GPIB interface bus is used. This section also describes the synchronization techniques between a controller and device.


These functions are used to control a device from an external controller using the GPIB interface bus. Most of these functions can also be used to control a device from an external controller using the RS-232C or Ethernet interface.

| 4.1 | IEEE4   | 88.2 Standard Status Model 4-                   | 2 |
|-----|---------|-------------------------------------------------|---|
| 4.2 | Status  | Byte (STB) Register 4-                          | 4 |
|     | 4.2.1   | ESB and MAV summary messages 4-                 | 4 |
|     | 4.2.2   | Device-dependent summary messages 4-            | 5 |
|     | 4.2.3   | Reading and clearing the STB register 4-        | 6 |
| 4.3 | Service | e Request (SRQ) Enabling Operation 4-           | 7 |
| 4.4 | Standa  | ard Event Status Register 4-                    | 8 |
|     | 4.4.1   | Bit definition of Standard Event Status         |   |
|     |         | Register 4-                                     | 8 |
|     | 4.4.2   | Reading, writing, and clearing the Standard     |   |
|     |         | Event Status Register 4-                        | 9 |
|     | 4.4.3   | Reading, writing, and clearing the Standard     |   |
|     |         | Event Status Enable Register 4-                 | 9 |
| 4.5 | Extend  | led Event Status Register 4-1                   | 0 |
|     | 4.5.1   | Bit definition of END Event Status Register 4-1 | 1 |
|     | 4.5.2   | Reading, writing, and clearing the Extended     |   |
|     |         | Event Status Register 4-1                       | 2 |
|     | 4.5.3   | Reading, writing, and clearing the Extended     |   |
|     |         | Status Enable Register 4-1                      | 2 |
| 4.6 | Synchi  | ronizing MS2681A/MS2683A/MS2687A/MS2687B        |   |
|     | with a  | Controller 4-1                                  | 3 |
|     | 4.6.1   | Wait for a response after the *OPC? query is    |   |
|     |         | sent                                            | 3 |
|     | 4.6.2   | Wait for a service request after *OPC is sent   |   |
|     |         | (only when the GPIB interface bus is used) 4-1  | 4 |

The Status Byte (STB) sent to the controller is based on the IEEE488.1 standard. The bits comprising the STB are called status summary messages because they represent a summary of the current data in registers and queues.

#### 4.1 IEEE488.2 Standard Status Model

The diagram below shows the standard model for the status data structures stipulated in the IEEE488.2 standard.



In the status model, IEEE488.1 status bytes are used for the lowest grade status. This status byte is composed of seven summary message bits from the higher grade status structure. To create these summary message bits, the status data structure is composed of two types of register and queue models.

| Register model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Queue model                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The register model consists of two registers used for recording events and conditions encountered by a device. These two registers are the Event Status Register and Event Status Enable Register. When the results of the AND operation of both register contents are other than 0, the corresponding bit of the status bit becomes 1. In other cases, the ult of their Logical OR is 1, the summary message bit also becomes 1. If the Logical OR result is 0, the summary message bit also becomes 0. | The queue in the queue model is used to sequentially record the waiting status values or information. If the queue is not empty, the queue structure summary message becomes 1.  If the queue is empty, the message becomes 0. |

In IEEE488.2, there are three standard models for the status data structure. Two are register models and one is a queue model based on the register model and queue model described above. The three standard models are:

- [1] Standard Event Status Register and Standard Event Status Enable Register
- [2] Status Byte Register and Service Request Enable Register
- [3] Output Queue

| Standard Event Status Regis-<br>ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Status Byte Register                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Output Queue                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Standard Event Status Register has the same structure as the previously described register model.  In this register, the bits for eight types of standard events encountered by a device are set as follows:  [1] Power on  [2] User request  [3] Command error  [4] Execution error  [5] Device-dependent error  [6] Query error  [7] Request for bus control right  [8] Operation complete  The Logical OR output bit is represented by Status Byte Register as a summary message for the Event Status Bit (ESB). | The Status Byte Register is a register in which the RQS bit and the seven summary message bits from the status data structure can be set. This register is used together with the Service Request Enable Register. When the results of the OR operation of both register contents are other than 0, SRQ becomes ON. To indicate this, bit 6 of the Status Byte Register (DIO7) is reserved by the system as the RQS bit. The RQS bit is used to indicate that there is a service request for the external controller. The mechanism of SRQ conforms to the IEEE488.1 standard. | The Output Queue has the structure of the queue model described above. Status Byte Register bit 4 (DIO5) is set as a summary message for Message Available (MAV) to indicate that there is data in the output buffer. |

### 4.2 Status Byte (STB) Register

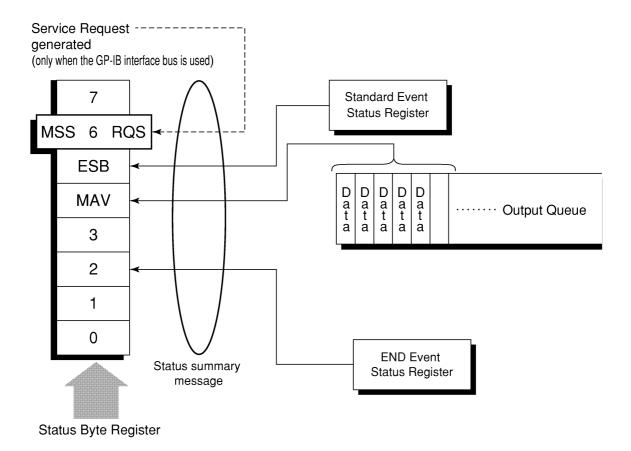
The STB register consists of the STB and RQS (or MSS) messages of the device.

#### 4.2.1 ESB and MAV summary messages

This paragraph describes the ESB and MAV summary messages.

#### (1) ESB summary message

The ESB (Event Summary Bit) is a message defined by IEEE488.2 which uses bit 5 of the STB register. When the setting permits events to occur, the ESB summary message bit becomes 1 if any one of the events recorded in the Standard Status Register becomes 1. Conversely, the ESB summary message bit becomes 0 if one of the recorded events occurs, even if events are set to occur.


This bit becomes 0 when the ESR register is read by the \*ESR? query or when it is cleared by the \*CLS command.

#### (2) MAV summary message

The MAV (Message Available) summary bit is a message defined by IEEE488.2 which uses bit 4 of the STB register. This bit indicates whether the output queue is empty. The MAV summary message bit is set to 1 when a device is ready to receive a request for a response message from the controller. When the output queue is empty, this bit is set to 0. This message is used to synchronize the information exchange with the controller. For example, this message is available when, after the controller sends a query command to a device, the controller waits until MAV becomes 1. While the controller is waiting for a response from the device, other jobs can be processed. Reading the Output Queue without first checking MAV will cause all system bus operations to be delayed until the device responds.

### 4.2.2 Device-dependent summary messages

As shown in the diagram below, the Spectrum Analyzer does not use bits 0, 1, 3, and 7, and it uses bit 2 as the summary bit of the Event Status Register.



#### 4.2.3 Reading and clearing the STB register

The STB register can be read using serial polling or the \*STB? common query. The IEEE488.1 STB message can be read by either method, but the value sent to bit 6 (position) is different for each method.

The STB register contents can be cleared using the \*CLS command.

# (1) Reading by serial polling (only when the GPIB interface bus is used) The IEEE488.1 serial polling allows the device to return a 7-bit status byte and an RQS message bit which conforms to IEEE488.1. The value of the status byte is not changed by serial polling. The device sets the RQS message to 0 immediately after being polled.

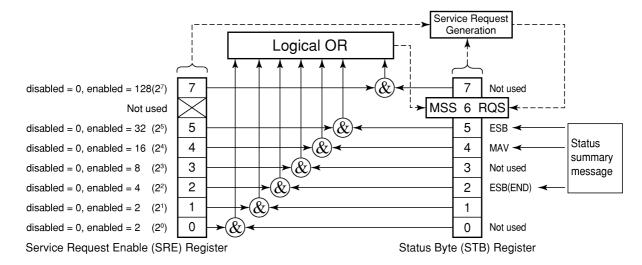
#### (2) Reading by the \*STB? common query

The \*STB? common query requires the devices to send the contents of the STB register and the integer format response messages, including the MSS (Master Summary Status) summary message. Therefore, except for bit 6, which represents the MSS summary message, the response to \*STB? is identical to that of serial polling.

#### (3) Definition of MSS (Master Summary Message)

MSS indicates that there is at least one cause for a service request. The MSS message is represented at bit 6 response to an \*STB? query, but it is not produced as a response to serial polling. It should not be taken as part of the status byte specified by IEEE488.1. MSS is configured by the overall logical OR in which the STB register and SRQ enable (SRE) register are combined.

#### (4) Clearing the STB register using the \*CLS common command


The \*CLS common command clears all status data structures as well as the summary messages corresponding to them.

The \*CLS command does not affect the settings in the Enable Register.

### 4.3 Service Request (SRQ) Enabling Operation

Bits 0 to 7 of the Service Request Enable Register (SRE) determine which bit of the corresponding STB register can generate SRQ.

The bits in the Service Request Enable Register correspond to the bits in the Status Byte Register. If a bit in the Status Byte Register corresponding to an enabled bit in the Service Request Enable Register is set to 1, the device makes a service request to the controller with the RQS bit set to 1.



#### (1) Reading the SRE register

The contents of the SRE register are read using the \*SRE? common query. The response message to this query is an integer from 0 to 255 which is the sum of the bit digit weighted values in the SRE register.

#### Updating the SRE register

The SRE register is written using the \*SRE common command. An integer from 0 to 255 is assigned as a parameter to set the SRE register bit to 0 or 1. The value of bit 6 is ignored.

## 4.4 Standard Event Status Register

#### 4.4.1 Bit definition of Standard Event Status Register

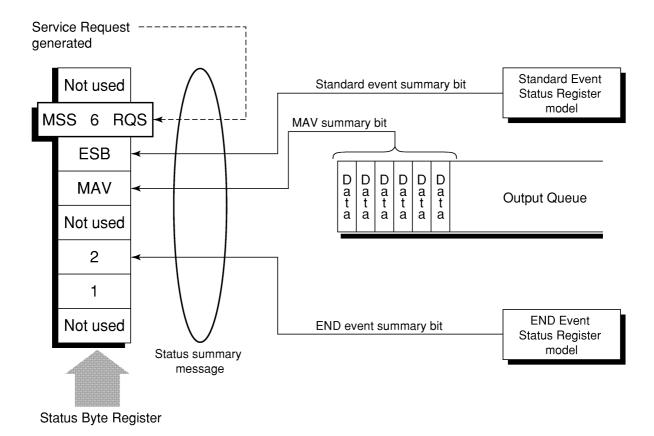
The diagram below shows the operation of the Standard Event Status Register.



The Standard Event Status Enable (ESE) Register on the left is used to select which bits in the corresponding Event Register will cause a TRUE summary message when set.

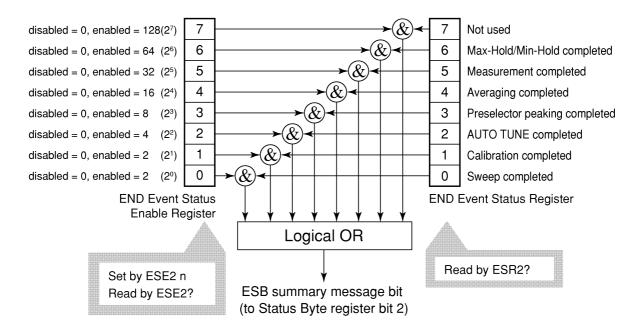
| Bit | Event name                                          | Description                                                                                                                           |
|-----|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 7   | Power on (PON-Power on)                             | A transition from power-off to power-on occurred during the power-up procedure.                                                       |
| 6   | Not used                                            |                                                                                                                                       |
| 5   | Command error<br>(CME-Command Error)                | An illegal program message or a misspelled command was received.                                                                      |
| 4   | Execution error (EXE-Execution Error)               | A legal but unexecutable program message was received.                                                                                |
| 3   | Device-dependent error (DDE-Device-dependent Error) | An error not caused by CME, EXE, or QYE occurred (parameter error, etc.).                                                             |
| 2   | Query error<br>(QYE-Query Error)                    | An attempt was made to read data in the Output Queue when it was empty. Or, the data in the Output Queue was lost before it was read. |
| 1   | Not used                                            |                                                                                                                                       |
| 0   | Operation complete<br>(OPC-Operation Complete)      | This bit becomes 1 when this instrument has processed the *OPC command.                                                               |

## 4.4.2 Reading, writing, and clearing the Standard Event Status Register


| Reading                                                                                                                                                                                                 | The register is read using the *ESR? command query.  The register is cleared after being read. The response message is integer-format data with the binary weight added to the event bit and the sum converted to decimal. |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Writing                                                                                                                                                                                                 | Writing With the exception of clearing, data cannot be written to the register from outside.                                                                                                                               |  |  |
| Clearing  The register is cleared when:  [1] A *CLS command is received  [2] The power is turned on Bit 7 is set to ON, and the other bits are cleare  [3] An event is read for the *ESR? query command |                                                                                                                                                                                                                            |  |  |

## 4.4.3 Reading, writing, and clearing the Standard Event Status Enable Register

|                                                                   | The register is read using the *ESE? command.            |  |  |  |
|-------------------------------------------------------------------|----------------------------------------------------------|--|--|--|
| Reading The response message is integer-format data with the bir  |                                                          |  |  |  |
|                                                                   | added to the event bit and the sum converted to decimal. |  |  |  |
| Writing                                                           | The register is written using the *ESE common command.   |  |  |  |
|                                                                   | The register is cleared when:                            |  |  |  |
|                                                                   | [1] An *ESE command with a data value of 0 is received   |  |  |  |
|                                                                   | [2] The power is turned on                               |  |  |  |
| Clearing The Standard Event Enable Register is not affected when: |                                                          |  |  |  |
| [1] The device clear function status of IEEE488.1 is changed      |                                                          |  |  |  |
| [2] An *RST common command is received                            |                                                          |  |  |  |
|                                                                   | [3] A *CLS common command is received                    |  |  |  |


## 4.5 Extended Event Status Register

For MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A, bits 7, 3, 1, and 0 are unused. Bit 2 is assigned to the END summary bit as the status-summary bit supplied by the extended register model as shown below.



#### 4.5.1 Bit definition of END Event Status Register

The diagram below shows the operation and event-bit names of the END Event Status Register.



The END Event Status Enable Register on the left is used to select which bits in the corresponding Event Register will cause a TRUE summary message when set.

| Bit | Event name                                                                              | Description                                                                                |
|-----|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| 7   | Not used                                                                                | Not used                                                                                   |
| 6   | Max Hold/Min Hold                                                                       | Sweeping according to the specified HOLD number has been completed.                        |
| 5   | Measurement completed                                                                   | Calculation processing for measurements (frequency count, noise, etc.) has been completed. |
| 4   | Averaging completed Sweeping according to the specified AVERAGE nur has been completed. |                                                                                            |
| 3   | Preselector peaking completed                                                           | Preselector peaking has been completed.                                                    |
| 2   | AUTO TUNE completed                                                                     | AUTO TUNE has been completed.                                                              |
| 1   | Calibration completed                                                                   | ALL CAL, LEVEL CAL, or FREQ CAL has been completed.                                        |
| 0   | Sweep completed                                                                         | A single sweep has been completed or is in standby.                                        |

## 4.5.2 Reading, writing, and clearing the Extended Event Status Register

| Reading  The ESR? common query is used to read the register. The register cleared after being read. The response message is integer-format with the binary weight added to the event bit and the sum converted decimal. |                                                                                                                                          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Writing                                                                                                                                                                                                                 | With the exception of clearing, data cannot be written to the register from outside.                                                     |  |  |
| Clearing                                                                                                                                                                                                                | The register is cleared when: [1] A *CLS command is received [2] The power is turned on [3] An event is read for the ESR2? query command |  |  |

## 4.5.3 Reading, writing, and clearing the Extended Status Enable Register

| Reading  The ESE2? query is used to read the register.  The response message is integer-format data with the binary added to the event bit and the sum converted to decimals.                                                                                                                                                       |                                                                                                                                                                                                                                                                                                         |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Writing                                                                                                                                                                                                                                                                                                                             | Writing  The ESE2 program command is used to write the register.  Because bits 0 to 7 of the registers are weighted with values 1, 2, 4, 8, 32, 64, and 128, respectively, the write data is transmitted as in ger-format data that is the sum of the required bit digits selected from weighted value. |  |  |  |
| The register is cleared when:  [1] An ESE2 program command with a data value of 0 is received.  [2] The power is turned on  The Extended Event Status Enable register is not affected whe [1] The device clear function status of IEEE488.1 is changed [2] An *RST common command is received [3] A *CLS common command is received |                                                                                                                                                                                                                                                                                                         |  |  |  |

## 4.6 Synchronizing MS2681A/MS2683A/MS2687A/ MS2687B/MS8608A/MS8609A with a Controller

MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A usually treats program messages as sequential commands that do not process newly-received commands until they complete the processing of the previous command. Therefore, no special consideration is necessary for pair-synchronization between MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A and the controller.

If the controller controls and synchronizes with one or more devices, after all the commands specified for MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A have been processed, the next commands must be sent to other devices.

There are two ways of synchronizing MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A with the controller:

- [1] Wait for a response after the \*OPC? query is sent.
- [2] Wait for SRQ after \*OPC is sent.

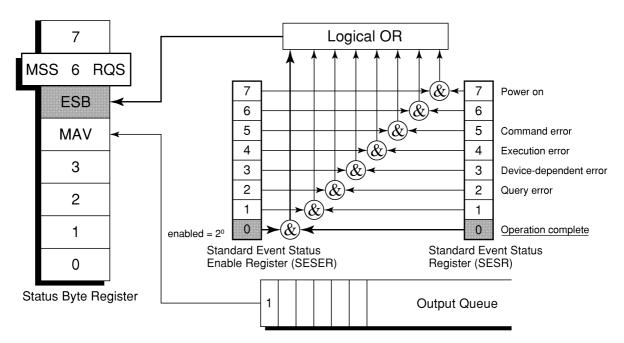
### 4.6.1 Wait for a response after the \*OPC? query is sent.

< Controller program >

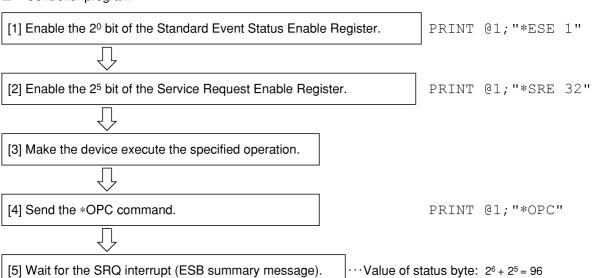
MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A outputs "1" as the response message when executing the \*OPC? query command. The controller is synchronized with MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A by waiting for the response message to be entered.

[1] Send one or more commands sequentially.

[2] Send the \*OPC? query.


[3] Read the response message.

To the next operation


To the next operation

## 4.6.2 Wait for a service request after \*OPC is sent (only when the GPIB interface bus is used).

The MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A sets the operation-complete bit (bit 0) to 1 when executing the \*OPC command. The controller is synchronized with the Spectrum Analyzer for SRQ when the operation-complete bit is set for SRQ.



#### ■ < Controller program >



## Section 5 Initial Settings

The MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A initializes the GPIB interface system at three levels in accordance with the IEEE488.2 specifications. This section describes how these three levels of initialization are processed, and how to instruct initialization from the controller.

| 5.1 | Bus Initialization Using the IFC Statement     | 5-3 |
|-----|------------------------------------------------|-----|
| 5.2 | Initialization for Message Exchange by DCL and |     |
|     | SDC Bus Commands                               | 5-4 |
| 5.3 | Device Initialization Using the *RST Command   | 5-6 |
| 5.4 | Device Initialization Using the INI/IP Command | 5-7 |
| 5.5 | Device Status at Power-on                      | 5-8 |

In the IEEE488.2 standard, there are three levels of initialization. The first level is "bus initialization," the second level is "initialization for message exchange," and the third level is "device initialization." This standard also stipulates that a device must be set to a known state when the power is turned on.

| Level | Initialization type                 | Description                                                                                                                                                                                                                               | Level combination and sequence                                                  |
|-------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| 1     | Bus initialization                  | The IFC message from the controller initializes all interface functions connected to the bus.                                                                                                                                             | Level 1 can be combined with other levels, but must be executed before level 2. |
| 2     | Initialization for message exchange | Message exchanges of all devices and specified devices on the GP-IB are initialized using the SDC and DCL GP-IB bus commands, respectively. These commands also nullify the function that reports operation completion to the controller. | other levels, but must be executed                                              |
| 3     | Device initialization               | The *RST or INI/IP command returns a specified device to a known device-specific state, regardless of the conditions under which it was being used.                                                                                       | other levels, but must be executed                                              |

When using the RS-232C (standard)/Ethernet (Option) interface port to control the MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A from the controller, the level-3 device initialization function of can be used, and the level-2 initialization function cannot be used. When using the GPIB (Standard) interface bus to control the MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A from the controller, the initialization functions of levels 1, 2, and 3 can be used.

The following paragraph describes the commands for initialization at levels 1, 2, and 3 and the items that are initialized. This paragraph also describes the known state that is set when the power is turned on.

## 5.1 Bus Initialization Using the IFC Statement

#### ■ Example

board% = 0
CALL SendIFC (board%)

#### ■ Explanation

This function can be using when using the GPIB interface bus is used to control the spectrum analyzer function from the controller.

The IFC statement initializes the interface functions of all devices connected to the GPIB bus line.

The initialization of interface functions involves clearing the interface function states of devices set by the controller, and resetting them to their initial states. In the table below, O indicates the functions that are initialized, and  $\Delta$  indicates the functions that are partially initialized.

| No | Function                      | Symbol  | Initialization by IFC |
|----|-------------------------------|---------|-----------------------|
| 1  | Source handshake              | SH      | 0                     |
| 2  | Acceptor handshake            | АН      | 0                     |
| 3  | Talker or extended talker     | T or TE | 0                     |
| 4  | Listener or extended listener | L or LT | 0                     |
| 5  | Service request               | SR      | Δ                     |
| 6  | Remote/local                  | RL      |                       |
| 7  | Parallel poll                 | PP      |                       |
| 8  | Device clear                  | DC      |                       |
| 9  | Device trigger                | DT      |                       |
| 10 | Controller                    | С       | 0                     |

Bus initialization by the IFC statement does not affect the device operating state (frequency settings, LED on/off, etc.).

## 5.2 Initialization for Message Exchange by DCL and SDC Bus Commands

#### ■ Example

Initializes all devices on the bus for message exchange (sending DCL).

```
board% = 0
addresslist% = NOADDR
CALL DevClearList(board%, addresslist%)
```

Initializes only the device at address 3 for message exchange (sending SDC).

```
board% = 0
address% = 3
CALL DevClear (board%, address%)
```

#### ■ Explanation

This function is available when the GPIB interface is used to control the Spectrum Analyzer from the controller.

This statement executes initialization for message exchange of all devices or a specified device on the GPIB having the specified select code.

#### ■ Items to be initialized for message exchange

When the Spectrum Analyzer accepts the DCL or SDC bus command, it does the following:

[1] Input buffer and Output Queue: Clears them and also clears the

MAV bit.

[2]Parser, Execution Controller, Resets them. and Response Formatter:

Device commands including \*RST: [3] Clears all commands that

prevent these commands from

being executed.

device [4] Processing of the \*OPC command: a in

> (Operation Complete Command Idle State). As a result, the operation complete bit cannot be set in the Standard Event

Status Register.

[5] Processing of the \*OPC? query: a device in OQIS

(Operation Complete Query Idle

State).

As a result, the operation complete bit 1 cannot be set in

the Output Queue.

[6] Device functions: Puts all functions associated

> with message exchange in the state. The device continues to wait for messagefrom the controller.

### CAUTION



The following are not affected even if the DCL and SDC commands are processed.

- [1] Current data set or stored in the device
- [2] Front panel settings
- [3] Status of status byte other than MAV bit
- [4] A device operation in progress

## 5.3 Device Initialization Using the \*RST Command

#### ■ Syntax

\*RST

#### **■** Example

#### For RS-232C/Ethernet

WRITE #1," \*RST".....Initializes the spectrum analyzer function at address 1 at level 3.

#### For GPIB

SPA%=1
CALL Send(0,SPA," \*RST",NLend)

#### ■ Explanation

The \*RST (Reset) command is an IEEE488.2 common command that resets a device at level 3.

The \*RST (Reset) command is used to reset a device (spectrum analyzer function) to a specific initial state.

#### Note:

The \*RST command does not affect the following.

- [1] IEEE488.1 interface state
- [2] Device address
- [3] Output Queue
- [4] Service Request Enable register
- [5] Standard Event Status Enable register
- [6] Power-on-status-clear flag setting
- [7] Calibration data affecting device specifications
- [8] Parameters preset for control of external device, etc.

## 5.4 Device Initialization Using the INI/IP Command

#### ■ Syntax

INI

ΙP

#### ■ Example (program message)

#### For RS-232C/Ethernet

WRITE #1,"INI" .....Initializes the device (spectrum analyzer function) at address 1 at level 3.

#### For GPIB

SPA%=1
CALL Send(0,SPA%,"INI",NLend)

#### ■ Explanation

The INI and IP commands are the analyzer device-dependent messages that initialize a device at level 3.

For the spectrum analyzer function, the measurement control parameters to be initialized for the spectrum analyzer function are initialized by sending this command.

### 5.5 Device Status at Power-on

When the power is turned on:

- [1] The device is set to the status it was in at power-off.
- [2] The Input Buffer and Output Queue are cleared.
- [3] The Parser, Execution Controller, and Response Formatter are initialized.
- [4] The device is put into OCIS (Operation Complete Command Idle State).
- [5] The device is put into OQIS (Operation Complete Query Idle State).
- [6] The Standard Event Status and Standard Event Status Enable Registers are cleared. Events can be recorded after the registers have been cleared.

## Section 6 Command List

This section lists the external control commands to be used by MX268130A/330A/730A/MX860830A/930A wireless LAN Measurement Software.

This list of commands is described for each measurement screen of the MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A.

Refer to Section 7 "Detailed Explanations of Commands," for more information on each command.

| 6.1  | List of Commands on Each Measurement Screen | 6-2  |
|------|---------------------------------------------|------|
| 6.2  | Commands Commonly Used on All Measurement   |      |
|      | Screens                                     | 6-3  |
| 6.3  | Setup Common Parameter                      | 6-7  |
| 6.4  | Modulation Analysis                         | 6-10 |
| 6.5  | RF Power                                    | 6-17 |
| 6.6  | Occupied Bandwidth                          | 6-20 |
| 6.7  | Adjacent Channel Power                      | 6-23 |
| 6.8  | Spectrum Mask                               | 6-27 |
| 6.9  | Spurious Emission                           | 6-31 |
| 6.10 | CCDF                                        | 6-39 |
| 6.11 | Symbol Rate Error                           | 6-41 |
| 6.12 | Chip Clock Error                            | 6-43 |
| 6.13 | IQ Level                                    | 6-45 |
| 6.14 | Power Meter                                 | 6-46 |
| 6 15 | Ratch Measurement                           | 6-47 |

### 6.1 List of Commands on Each Measurement Screen

The following pages show a list of commands (device messages) for each item on the wireless LAN Measurement Software measurement screen.

■ Meanings of device message character strings

(a) Uppercase character: Reserved word

(b) Numeric value: Reserved word (Numerical code)

(c) Lowercase character: Parameter (Argument)

| Parameter | Meaning                                                              | Value/Form                                                           | Unit/Suffix code                                                                                     |
|-----------|----------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| f         | frequency                                                            | Real or integer<br>number with a<br>decimal point                    | GHZ, MHZ, KHZ,<br>HZ, GZ, MZ, KZ,<br>When omitted: HZ                                                |
| t         | time                                                                 | Real or integer<br>number with a<br>decimal point                    | S, SC, MS, US,<br>None: MS                                                                           |
| 1         | level                                                                | Real or integer<br>number with a<br>decimal point                    | DB, DBM, DM,<br>DBMV, DBUV,<br>DBUVE, V, MV,<br>UV, W, MW, UW,<br>NW, When omitted<br>(default unit) |
| n         | Integer number with no unit, or integer number with a specified unit | Decimal integer                                                      | None or specified                                                                                    |
| 0         | Integer number with no unit                                          | Octal integer                                                        | None                                                                                                 |
| h         | Integer number with no unit                                          | Hexadecimal integer                                                  | None                                                                                                 |
| r         | Integer number with no unit, or integer number with a specified unit | Real number                                                          | None or specified                                                                                    |
| j         | Numeric value judgement                                              | PASS (Passable)/<br>FAIL (Outside the<br>specified range)            | None                                                                                                 |
| s         | Binary judgement                                                     | ON/OFF                                                               | None                                                                                                 |
| u         | Unit specification                                                   | DB, DBM, DM,<br>DBMV, DBUV,<br>DBUVE, V, MV,<br>UV, W, MW, UW,<br>NW | None                                                                                                 |

## 6.2 Commands Commonly Used on All Measurement Screens

This section lists the commands used on all the measurement screens for wireless LAN Measurement software.

For more information on external control commands commonly used in all the measurement modes for the MS2681A/MS2683A/MS2687A/MS2687B/ MS8608A/MS8609A, refer to MS2681A/MS2683A/MS2687A/MS2687B Spectrum Analyzer Operation Manual or MS8608A/MS8609A Digital Mobile Radio Transmitter Tester Operation Manual.

#### Measurement mode switching

| Function        | Item     | Program Message | Query Message | Response Message | Remarks |
|-----------------|----------|-----------------|---------------|------------------|---------|
| Spectrum A      | Analyzer | PNLMD SPECT     | PNLMD?        | SPECT            |         |
| Signal Analysis |          | PNLMD SYSTEM    | PNLMD?        | SYSTEM           |         |
| Config          |          | PNLMD CONFIG    | PNLMD?        | CONFIG           |         |

#### Measurement system switching

| Function        | Item | Program Message | Query Message | Response Message | Remarks |
|-----------------|------|-----------------|---------------|------------------|---------|
| System - 1      | (F1) | SYS 1           | SYS?          | 1                |         |
| System - 2      | (F2) | SYS 2           | SYS?          | 2                |         |
| System - 3 (F3) |      | SYS 3           | SYS?          | 3                |         |

#### Output data format

| Function        | Item | Program Message | Query Message | Response Message | Remarks |
|-----------------|------|-----------------|---------------|------------------|---------|
| Binary code     |      | BIN ON          | BIN?          | ON               |         |
|                 |      | BIN 1           | BIN?          | ON               |         |
| ASCII character |      | BIN OFF         | BIN?          | OFF              |         |
| string          |      | BIN 0           | BIN?          | OFF              |         |

#### Initialization

| Function | Item | Program Message | Query Message | Response Message | Remarks |
|----------|------|-----------------|---------------|------------------|---------|
|          |      | PRE             | _             | _                |         |
| Preset   |      | INI             | _             | _                |         |
|          |      | IP              | _             | _                |         |

#### Measurement screen switching

| Function Item          |                 | Program Message          | Query<br>Message | Response Message | Remarks |
|------------------------|-----------------|--------------------------|------------------|------------------|---------|
| Setup Common Parameter |                 | DSPL SETCOM              | DSPL?            | SETCOM           |         |
| Modulation An          | alysis          | DSPL MODANAL             | DSPL?            | MODANAL          |         |
| RF Power               |                 | DSPL RFPWR               | DSPL?            | RFPWR            |         |
| Occupied Band          | lwidth          | DSPL OBW                 | DSPL?            | OBW              |         |
| Adjacent               | SPECT1          | DSPL ADJ,SPECT1          | DSPL?            | ADJ,SPECT1       |         |
| Channel<br>Power       | SPECT2          | DSPL ADJ,SPECT2          | DSPL?            | ADJ,SPECT2       |         |
| Spectrum               | Mask            | DSPL SMASK               | DSPL?            | SMASK            |         |
| Mask                   | Set<br>Template | DSPL SETTEMP_SMASK       | DSPL?            | SETTEMP_SMASK    |         |
|                        | Spot            | DSPL SPURIOUS,SPOT       | DSPL?            | SPURIOUS,SPOT    |         |
| Spurious<br>Emissions  | Search          | DSPL<br>SPURIOUS,SEARCH  | DSPL?            | SPURIOUS,SEARCH  |         |
|                        | Sweep           | DSPL SPURIOUS,SWEEP      | DSPL?            | SPURIOUS,SWEEP   |         |
|                        | Spot            | DSPL SETTBL_SPU,SPOT     | DSPL?            | SETTBL_SPU,SPOT  |         |
| Setup Table            | Sweep           | DSPL<br>SETTBL_SPU,SWEEP | DSPL?            | SETTBL_SPU,SWEEP |         |
| CCDF                   | CCDF            | DSPL CCDF,CCDF           | DSPL?            | CCDF,CCDF        |         |
| CCDF                   | APD             | DSPL CCDF,APD            | DSPL?            | CCDF,APD         |         |
| Symbol Rate E          | rror            | DSPL SRERR               | DSPL?            | SRERR            |         |
| Chip Clock Err         | or              | DSPL CCERR               | DSPL?            | CCERR            |         |
| IQ Level               |                 | DSPL IQLVL               | DSPL?            | IQLVL            |         |
| Power Meter            |                 | DSPL PWRMTR              | DSPL?            | PWRMTR           |         |
| Batch                  | Batch           | DSPL BATCH               | DSPL?            | BATCH            |         |
| Measurement            | Setup Table     | DSPL SETTBL_BCH          | DSPL?            | SETTBL_BCH       |         |
| Back Screen            |                 | BS                       |                  |                  |         |

#### Measurement error reading

| Function                 | Item  | Program Message | Query Message | Response Message | Remarks |
|--------------------------|-------|-----------------|---------------|------------------|---------|
| Normal                   |       | _               | MSTAT?        | 0                |         |
| RF Level I               | imit  | _               | MSTAT?        | 1                |         |
| Level Over               | •     | _               | MSTAT?        | 2                |         |
| Level Unde               | er    | _               | MSTAT?        | 3                |         |
| Signal Abn               | ormal | _               | MSTAT?        | 4                |         |
| No Synchronization       |       | _               | MSTAT?        | 5                |         |
| Trigger Timeout          |       | _               | MSTAT?        | 6                |         |
| No Measur                | re .  | _               | MSTAT?        | 9                |         |
| Un-detection of preamble |       | _               | MSTAT?        | 10               |         |

#### Measurement start

| Function    | Item      | Program Message | Query Message | Response Message | Remarks |
|-------------|-----------|-----------------|---------------|------------------|---------|
|             | No Camo   | SNGLS           | _             | _                |         |
| Single      | No Sync   | S2              | _             | _                |         |
| Single      | Sync      | SWP             | _             | _                |         |
|             |           | TS              | _             | _                |         |
| Continuous  | No Crmo   | CONTS           | _             | _                |         |
| Continuous  | No Sync   | S1              | _             | _                |         |
| Measurement | END       | _               | SWP?          | SWP 0            |         |
| status      | Measuring | _               | SWP?          | SWP 1            |         |

#### Measurement screen switching + Measurement starting

| Function Item          |                   | Program Message          | Query<br>Message | Response Message | Remarks  |
|------------------------|-------------------|--------------------------|------------------|------------------|----------|
| Setup Common Parameter |                   | MEAS SETCOM              | MEAS?            | SETCOM           |          |
| Modulation A           | nalysis           | MEAS MODANAL             | MEAS?            | MODANAL          |          |
| RF Power               |                   | MEAS RFPWR               | MEAS?            | RFPWR            |          |
| Occupied Bane          | dwidth            | MEAS OBW                 | MEAS?            | OBW              |          |
| Adjacent               | SPECT1            | MEAS ADJ,SPECT1          | MEAS?            | ADJ,SPECT1       |          |
| Channel<br>Power       | SPECT2            | MEAS ADJ,SPECT2          | MEAS?            | ADJ,SPECT2       |          |
| Spectrum Mas           | k                 | MEAS SMASK               | MEAS?            | SMASK            |          |
|                        | Spot              | MEAS SPURIOUS,SPOT       | MEAS?            | SPURIOUS,SPOT    |          |
| Spurious<br>Emissions  | Search            | MEAS<br>SPURIOUS,SEARCH  | MEAS?            | SPURIOUS,SEARCH  |          |
|                        | Sweep             | MEAS SPURIOUS,SWEEP      | MEAS?            | SPURIOUS,SWEEP   |          |
|                        | Spot              | MEAS SETTBL_SPU,SPOT     | MEAS?            | SETTBL_SPU,SPOT  |          |
| Setup Table            | Sweep             | MEAS<br>SETTBL_SPU,SWEEP | MEAS?            | SETTBL_SPU,SWEEP |          |
| CCDF                   | CCDF              | MEAS CCDF,CCDF           | MEAS?            | CCDF,CCDF        |          |
| CCDF                   | APD               | MEAS CCDF,APD            | MEAS?            | CCDF,APD         |          |
| Symbol Rate I          | Error             | MEAS SRERR               | MEAS?            | SRERR            |          |
| Chip Clock Er          | ror               | MEAS CCERR               | MEAS?            | CCERR            |          |
| IQ Level               |                   | MEAS IQLVL               | MEAS?            | IQLVL            |          |
| Power Meter            |                   | MEAS PWRMTR              | MEAS?            | PWRMTR           |          |
| Back Screen            |                   | BS                       |                  |                  |          |
| Switch                 | RF Input:<br>High | RFINPUT HIGH             | RFINPUT?         | HIGH             | For Main |
| Connector              | RF Input:<br>Low  | RFINPUT LOW              | TOP INT UT!      | LOW              | MS8608A  |

#### Pre Ampl (Option 08)

| Function | Item | Program Message | Query Message | Response Message | Remarks |
|----------|------|-----------------|---------------|------------------|---------|
| On       |      | PREAMP ON       | PREAMP?       | ON               |         |
| Off      |      | PREAMP OFF      | PREAMP?       | OFF              |         |

#### Section 6 Command List

#### Correction

| Function | Item | Program Message | Query Message | Response Message | Remarks |
|----------|------|-----------------|---------------|------------------|---------|
| Off      |      | CORR 0          | CORR?         | 0                |         |
| Table 1  |      | CORR 1          | CORR?         | 1                |         |
| Table 2  |      | CORR 2          | CORR?         | 2                |         |
| Table 3  |      | CORR 3          | CORR?         | 3                |         |
| Table 4  | •    | CORR 4          | CORR?         | 4                |         |
| Table 5  |      | CORR 5          | CORR?         | 5                |         |

## 6.3 Setup Common Parameter

The list below shows the correspondence between the external control commands and the setting items on the Setup Common Parameter screen.

#### Correction

| Function          | Item                 | Program Message | Query Message | Response<br>Message | Remarks                                                                                                          |
|-------------------|----------------------|-----------------|---------------|---------------------|------------------------------------------------------------------------------------------------------------------|
|                   | RF                   | TERM RF         | TERM?         | RE                  |                                                                                                                  |
| Terminal          | IQ-DC                | TERM IQDC       | TERM?         | IQDC                |                                                                                                                  |
| Terminai          | IQ-AC                | TERM IQAC       | TERM?         | IQAC                |                                                                                                                  |
|                   | IQ-Balance           | TERM IQBAL      | TERM?         | IQBAL               |                                                                                                                  |
| Immodonos         | 50 Ω                 | IQINZ 50        | IQINZ?        | 50                  |                                                                                                                  |
| Impedance         | $1~\mathrm{M}\Omega$ | IQINZ 1M        | IQINZ?        | 1M                  |                                                                                                                  |
| Reference Le      |                      | RFLVL 1         | RFLVL?        | 1                   |                                                                                                                  |
| Reference Le      | evel Offset          | RFLVLOFS 1      | RFLVLOFS?     | 1                   |                                                                                                                  |
| Carrier Frequency |                      | FREQ f          | FREQ?         | f                   | f:<br>(MS2681A)<br>100 MHz to 3.0 GHz<br>(MS2683A/MS2687A/M<br>S2687B/MS8608A/<br>MS8609A)<br>100 MHz to 6.0 GHz |

#### Setup Common Parameter (continued.)

| Function         | Item                              | Program Message   | Query<br>Message | Response<br>Message | Remarks                                                                                                                                                                                                                                              |
|------------------|-----------------------------------|-------------------|------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | IEEE802.11a                       | TGTSY 11A         | TGTSY?           | 11A                 |                                                                                                                                                                                                                                                      |
|                  | HiperLAN2                         | TGTSY HLAN2       | TGTSY?           | HLAN2               |                                                                                                                                                                                                                                                      |
|                  | HiSWANa                           | TGTSY HISWAN      | TGTSY?           | HISWAN              |                                                                                                                                                                                                                                                      |
|                  | IEEE802.11b                       | TGTSY 11B         | TGTSY?           | 11B                 |                                                                                                                                                                                                                                                      |
| Target<br>System | IEEE802.11g<br>(ERP-DSSS/C<br>CK) | TGTSY 11G_CCK     | TGTSY?           | 11G_CCK             |                                                                                                                                                                                                                                                      |
|                  | IEEE802.11g<br>(ERP-OFDM)         | TGTSY 11G_EOFDM   | TGTSY            | 11G_EOFDM           |                                                                                                                                                                                                                                                      |
|                  | IEEE802.11g<br>(DSSS-OFDM)        | TGTSY 11G_DOFDM   | TGTSY            | 11G_DOFDM           |                                                                                                                                                                                                                                                      |
|                  | Burst                             | MEASOBJ BURST     | MEASOBJ?         | BURST               |                                                                                                                                                                                                                                                      |
|                  | BC_Burst                          | MEASOBJ BC_BURST  | MEASOBJ?         | BC_BURST            | *1                                                                                                                                                                                                                                                   |
| Measuring        | DL_Burst                          | MEASOBJ DL_BURST  | MEASOBJ?         | DL_BURST            | *1                                                                                                                                                                                                                                                   |
| Object           | UL_Burst                          | MEASOBJ UL_BURST  | MEASOBJ?         | UL_BURST            | *1                                                                                                                                                                                                                                                   |
|                  | Burst(All)                        | MEASOBJ ALL_BURST | MEASOBJ?         | ALL_BURST           | *1                                                                                                                                                                                                                                                   |
|                  | Continuous                        | MEASOBJ CONT      | MEASOBJ?         | CONT                |                                                                                                                                                                                                                                                      |
| Data Rate        | OFDM-BPSK                         | DATRATE r         | DATRATE?         | r<br>OFBPSK         | r: (IEEE802.11a, IEEE802.11g (ERP-OFDM), IEEE802.11g (DSSS-OFDM)) 6, 9, 12, 18, 24, 36, 48, 54, AUTO (HiperLAN2) 6, 9, 12, 18, 27, 36, 54 (HiSWANa) 6, 9, 12, 18, 27, 36, 54 (HiSWAND) (IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)) 1, 2, 5.5, 11, AUTO |
|                  |                                   | MODTYPE OFBPSK    | MODTYPE?         | _                   |                                                                                                                                                                                                                                                      |
|                  | OFDM-QPSK                         | MODTYPE OF COAM   | MODTYPE?         | OFQPSK              |                                                                                                                                                                                                                                                      |
|                  | OFDM-16QAM                        | MODTYPE OF16QAM   | MODTYPE?         | OF16QAM             |                                                                                                                                                                                                                                                      |
| Modulation       | OFDM-64QAM                        | MODTYPE OF64QAM   | MODTYPE?         | OF64QAM             |                                                                                                                                                                                                                                                      |
|                  | DBPSK                             | MODTYPE DBPSK     | MODTYPE?         | DBPSK               |                                                                                                                                                                                                                                                      |
|                  | DQPSK                             | MODTYPE DQPSK     | MODTYPE?         | DQPSK               |                                                                                                                                                                                                                                                      |
|                  | CCK 5.5Mbps                       | MODTYPE CCK5_5M   | MODTYPE?         | CCK5_5M             |                                                                                                                                                                                                                                                      |
|                  | CCK 11Mbps                        | MODTYPE CCK11M    | MODTYPE?         | CCK11M              |                                                                                                                                                                                                                                                      |
|                  | Off                               | FILTER OFF        | FILTER?          | OFF                 |                                                                                                                                                                                                                                                      |
| Filter           | Rectangular                       | FILTER RECT       | FILTER?          | RECT                |                                                                                                                                                                                                                                                      |
|                  | Gaussian                          | FILTER GAUSS      | FILTER?          | GAUSS               |                                                                                                                                                                                                                                                      |
|                  | Root Raised Cosine                | FILTER RRC        | FILTER?          | RRC                 |                                                                                                                                                                                                                                                      |

#### Setup Common Parameter (continued.)

| Function         | Item     | Program Message | Query Message | Response<br>Message | Remarks                             |
|------------------|----------|-----------------|---------------|---------------------|-------------------------------------|
| BT               |          | GAUSSBT r       | GAUSSBT?      | r                   | r: 0.3 to 1.0                       |
| α                |          | ROLLOFF r       | ROLLOFF?      | r                   | r: 0.30 to 1.00                     |
|                  | Free Run | TRG FREE        | TRG?          | FREE                | *                                   |
| Trigger          | External | TRG EXT         | TRG?          | EXT                 | *                                   |
|                  | Wide IF  | TRG WIDEIF      | TRG?          | WIDEIF              | *                                   |
| Trigger          | Rise     | TRGEDGE RISE    | TRGEDGE?      | RISE                | *                                   |
| Edge             | Fall     | TRGEDGE FALL    | TRGEDGE?      | FALL                | *                                   |
| Trigger Delay    |          | TRGDLY t        | TRGDLY?       | t                   | *<br>t: -1000.0 to<br>+10000.0 usec |
| m .              | High     | TRGLVL HIGH     | TRGLVL?       | HIGH                | *                                   |
| Trigger<br>Level | Middle   | TRGLVL MIDDLE   | TRGLVL?       | MIDDLE              | *                                   |
| Levei            | Low      | TRGLVL LOW      | TRGLVL?       | LOW                 | *                                   |

<sup>\*</sup> Valid only for CCDF measurement.

<sup>\*1</sup> Valid only for HiSWANa

## 6.4 Modulation Analysis

The list below shows the correspondence between the external control commands and the reading of the setting items and measured results on the Modulation Analysis screen.

| Function             | Item                        | Program Message         | Query<br>Message  | Response<br>Message | Remarks                        |
|----------------------|-----------------------------|-------------------------|-------------------|---------------------|--------------------------------|
|                      | No Trace                    | TRFORM NON              | TRFORM?           | NON                 |                                |
|                      | Constellation               | TRFORM CONSTEL          | TRFORM?           | CONSTEL             |                                |
|                      | Constellation(BPSK)         | TRFORM<br>CONSTEL_BPSK  | TRFORM?           | CONSTEL<br>_BPSK    | *3                             |
|                      | Constellation(QPSK)         | TRFORM<br>CONSTEL_QPSK  | TRFORM?           | CONSTEL _QPSK       | *3                             |
|                      | Constellation(16QAM)        | TRFORM<br>CONSTEL_16QAM | TRFORM?           | CONSTEL<br>_16QAM   | *3                             |
|                      | Constellation(64QAM)        | TRFORM<br>CONSTEL_64QAM | TRFORM?           | CONSTEL<br>_64QAM   | *3                             |
|                      | Eye Diagram                 | TRFORM EYE              | TRFORM?           | EYE                 | *1                             |
|                      | EVM vs. Symbol              | TRFORM EVMSYM           | TRFORM?           | EVMSYM              | *2                             |
|                      | EVM vs. Chip                | TRFORM EVMSYM           | TRFORM?           | EVMSYM              | *1                             |
| (T) Ti               | Phase Error vs. Chip        | TRFORM PHASE            | TRFORM?           | PHASE               | *1                             |
| Trace Format         | Phase Error vs.<br>Symbol   | TRFORM PHASE            | TRFORM?           | PHASE               | *2                             |
|                      | EVM vs. Sub-carrier         | TRFORM EVMSUB           | TRFORM?           | EVMSUB              | *2                             |
|                      | EVM vs. Sub-carrier (BPSK)  | TRFORM<br>EVMSUB_BPSK   | TRFORM?           | EVMSUB<br>_BPSK     | *3                             |
|                      | EVM vs. Sub-carrier (QPSK)  | TRFORM<br>EVMSUB_QPSK   | TRFORM?           | EVMSUB<br>_QPSK     | *3                             |
|                      | EVM vs. Sub-carrier (16QAM) | TRFORM<br>EVMSUB_16QAM  | TRFORM?           | EVMSUB<br>_16QAM    | *3                             |
|                      | EVM vs. Sub-carrier (64QAM) | TRFORM<br>EVMSUB_64QAM  | TRFORM?           | EVMSUB<br>_64QAM    | *3                             |
|                      | EVM vs. Sub-carrier TRFORM  |                         | TRFORM?           | EVMSUB<br>_TOTAL    | *3                             |
|                      | Spectrum Flatness           | TRFORM SPFLAT           | TRFORM?           | SPFLAT              | *2                             |
|                      | All                         | CONSTVIEW ALL           | CONSTVIEW?        | ALL                 | *2                             |
|                      | First Symbol                | CONSTVIEW FIRST         | CONSTVIEW?        | FIRST               | *2                             |
|                      | Last Symbol                 | CONSTVIEW LAST          | CONSTVIEW?        | LAST                | *2                             |
| View Selection       | Pilot only                  | CONSTVIEW PILOT         | CONSTVIEW?        | PILOT               | *2                             |
| V10 II 201001        | One Sub-carrier             | CONSTVIEW ONE n         | CONSTVIEW?<br>ONE | n                   | *2<br>n: -26 to<br>-1, 1 to 26 |
|                      | Outside Pair                | CONSTVIEW OUT           | CONSTVIEW?        | OUT                 | *2                             |
| Flatness Massarra    | nont                        | FLATMEAS ON             | FLATMEAS?         | ON                  |                                |
| Flatness Measurement |                             | FLATMEAS OFF            | FLATMEAS?         | OFF                 |                                |

| Function Item    |           | Program Message     | Query<br>Message         | Response<br>Message | Remarks                                                                                                                                                                                   |
|------------------|-----------|---------------------|--------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | Normal    | STRG_MOD NRM        | STRG_MOD?                | NRM                 |                                                                                                                                                                                           |
| Storage Mode     | Average   | STRG_MOD AVG        | STRG_MOD?                | AVG                 |                                                                                                                                                                                           |
|                  | Overwrite | STRG_MOD OVER       | STRG_MOD?                | OVER                |                                                                                                                                                                                           |
| Average Count    | •         | AVR_MOD n           | AVR_MOD?                 | n                   | n:2 to 999                                                                                                                                                                                |
| Refresh Interval | Every     | INTVAL_MOD<br>EVERY | INTVAL_MOD INTVAL_MOD2 F |                     |                                                                                                                                                                                           |
|                  | Once      | INTVAL_MOD ONCE     | INTVAL_MOD?              | ONCE                |                                                                                                                                                                                           |
| Analysis Length  |           | ANLYLEN n           | ANLYLEN?                 | n                   | n:<br>(IEEE802.11a,<br>HiperLAN2,<br>HiSWANa,<br>IEEE802.11g<br>(ERP-OFDM),<br>IEEE802.11g<br>(DSSS-OFDM))<br>1 to 1367<br>(IEEE802.11b,<br>IEEE802.11g<br>(ERP-DSSS/CCK))<br>256 to 4096 |
| Analysis Start   |           | ANLYSTART n         | ANLYSTART?               | n                   | *3                                                                                                                                                                                        |
| EVM Threshold    | OFF       | EVM_THRES OFF       | EVM_THRES?               | OFF                 | *3                                                                                                                                                                                        |
| EVINI Inresnoid  | ON        | EVM_THRES ON        | EVM_THRES?               | ON                  | ] · o                                                                                                                                                                                     |
| Threshold Level  |           | THREHOLD n          | THREHOLD?                | n                   | *3<br>n:5~20                                                                                                                                                                              |
|                  | 5%        | ERRSC 5             | ERRSC?                   | 5                   |                                                                                                                                                                                           |
|                  | 10%       | ERRSC 10            | ERRSC?                   | 10                  |                                                                                                                                                                                           |
| Error Scale      | 20%       | ERRSC 20            | ERRSC?                   | 20                  |                                                                                                                                                                                           |
|                  | 35%       | ERRSC 35            | ERRSC?                   | 35                  |                                                                                                                                                                                           |
|                  | OFF       | ERRSC OFF           | ERRSC?                   | OFF                 |                                                                                                                                                                                           |

<sup>\*1:</sup> IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)

 $<sup>\</sup>pm 2$ : IEEE802.11a, HiSWANa, HiperLAN2, IEEE802.11g (ERP-OFDM), IEEE802.11g (DSSS-OFDM)

<sup>\*3:</sup> HiSWANa

| Function       | Item                          | Program Message | Query Message                   | Response<br>Message               | Remarks                                                                                                                                                                                                           |
|----------------|-------------------------------|-----------------|---------------------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 5 [%, deg, dB]                | VSCALE 5        | VSCALE?                         | 5                                 |                                                                                                                                                                                                                   |
| Vertical Scale | 10 [%, deg, dB]               | VSCALE 10       | VSCALE?                         | 10                                |                                                                                                                                                                                                                   |
|                | 20 [%, deg, dB]               | VSCALE 20       | VSCALE?                         | 20                                |                                                                                                                                                                                                                   |
|                | 50 [%, deg, dB]               | VSCALE 50       | VSCALE?                         | 50                                |                                                                                                                                                                                                                   |
|                | 100 [%, deg, dB]              | VSCALE 100      | VSCALE?                         | 100                               |                                                                                                                                                                                                                   |
| Adjust Range   |                               | ADJRNG          | _                               | _                                 |                                                                                                                                                                                                                   |
|                | Level Calibration             | LVLCAL          | _                               | _                                 |                                                                                                                                                                                                                   |
|                | Pre-selector Tuning           | PSLTUNE         | _                               | _                                 |                                                                                                                                                                                                                   |
|                | Level Calibration<br>using PM | PWRCAL          | PWRCAL?                         | 1                                 | 1: -10.00 to +10.00                                                                                                                                                                                               |
|                |                               | _               | CALSTAT? LVL                    | n1, n2, n3, n4,<br>n5, n6, n7     | n1: 0: Normal termination 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time                                                                                      |
| Calibration    | Calibration Status            | _               | CALSTAT? PSL<br>CALSTAT?<br>PWR | n1, n2, n3, n4,<br>n5, n6, n7, n8 | n1: 0: Normal termination 1: Input limit 4: Abnormal signal 7: No input signal 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time n8: Calibration frequency [MHz] |

| Function          | Item                                       | Program Message  | Query Message | Response<br>Message | Remarks                                                                                      |
|-------------------|--------------------------------------------|------------------|---------------|---------------------|----------------------------------------------------------------------------------------------|
| Calibration Value |                                            | CALVAL 1         | CALVAL?       | n,l                 | n: mode (0: Not calibrated, 1: Internal Calibration, 2: External writing 1: -10.00 to 10.00) |
| Marker            | Normal                                     | MKR_MOD NRM      | MKR_MOD?      | NRM                 |                                                                                              |
| Mode              | Off                                        | MKR_MOD OFF      | MKR_MOD?      | OFF                 |                                                                                              |
|                   |                                            | MKP_MOD<br>SYM,n | MKP_MOD? SYM  | n                   | *2<br>n: 1 to 1367                                                                           |
|                   |                                            | MKP_MOD<br>SUB,n | MKP_MOD? SUB  | n                   | *2<br>n: -26 to -1, 1 to<br>26                                                               |
| Marker Pos        | ition                                      | MKP_MOD n1,n2    | MKP_MOD?      | n1,n2               | *2<br>n1: 1 to 1367<br>n2: -26 to -1, 1 to<br>26                                             |
|                   |                                            | MKP_MOD n        | MKP_MOD?      | n                   | *1<br>n: 0 to 4095                                                                           |
|                   | Constellation                              | _                | MKL_MOD? I    | r                   |                                                                                              |
| Marker            | Eye Diagram                                | _                | MKL_MOD? Q    | r                   |                                                                                              |
| Level             | Other than<br>Constellation<br>Eye Diagram | _                | MKL_MOD?      | r                   |                                                                                              |
| •                 |                                            | _                | MKSSYM?       | r                   |                                                                                              |
| Marker Syr        | nbol                                       | _                | MKSSYM? SYM   | r                   | *2                                                                                           |
|                   |                                            | _                | MKSSYM? SUB   | r                   | *2                                                                                           |
|                   | Carrier<br>Frequency                       | _                | CARRF?        | f                   | Hz                                                                                           |
|                   | g .                                        | _                | CARRFERR?     | f                   |                                                                                              |
|                   | Carrier<br>Frequency Error                 | _                | CARRFERR? HZ  | f                   | Hz                                                                                           |
|                   | Frequency Error                            | _                | CARRFERR? PPM | r                   | *2<br>Hz                                                                                     |
|                   | DMC EVM                                    | _                | VECTERR?      | r                   | %                                                                                            |
|                   | RMS EVM                                    | _                | VECTERR? DB   | r                   | dB                                                                                           |
| Measure           | EVM<br>(View Selection)                    | _                | VECTERR? VIEW | r                   |                                                                                              |
| Result            | Peak EVM                                   | _                | PVECTERR?     | r                   | %                                                                                            |
|                   | Phase Error                                | _                | PHASEERR?     | r                   | degree                                                                                       |
|                   | Magnitude<br>Error                         | _                | MAGTDERR?     | r                   | *1 %                                                                                         |
|                   | Origin Offset                              | _                | ORGOFS?       | r                   | *1<br>dB                                                                                     |
|                   | Modulation<br>Type                         | _                | RSLTMODTYPE?  | a                   |                                                                                              |
|                   | Signal Length                              |                  | RSLTANALYLEN? | n                   |                                                                                              |

| Function          | Item                        | Program<br>Message | Query Message   | Response<br>Message | Remarks              |
|-------------------|-----------------------------|--------------------|-----------------|---------------------|----------------------|
|                   | The Latest Bursts           | _                  | NUMSYM_BST? a   |                     | *3                   |
|                   | Total                       | _                  | NUMSYM_TOTAL? a |                     | *3                   |
|                   | Number of Measured<br>Burst | _                  | NUMBST? a       |                     | *3                   |
| Measure<br>Result | Carrier Leak                | _                  | CARRLK?         | r                   | *2<br>dB             |
|                   | PHY Burst                   | _                  | PHY_BURST?      | phy                 | *3<br>BC,DL,UL_Burst |
|                   | Flatness (Outside)          | _                  | FLATOUT?        | r1.n1,r2,n2         |                      |
|                   | Flatness (Inside)           | _                  | FLATIN?         | r1.n1,r2,n2         |                      |

<sup>\*1:</sup> IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)

 $<sup>\</sup>hbox{$^*2$: IEEE802.11a, HiSWANa, HiperLAN2, IEEE802.11g (ERP-OFDM), IEEE802.11g (DSSS-OFDM)$}$ 

<sup>\*3:</sup> HiSWANa

#### Modulation Analysis (continued.)

| Function     | Item                            | Program<br>Message       | Query Message                                                                                                                             | Response Message    | Remarks                                                                                                                                    |
|--------------|---------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
|              | I Phase Data<br>(Constellation) | _                        | ICONST? na,nb                                                                                                                             | nc(1),nc(2),,nc(nb) | na: 0 to 71083 (Data reading address) nb: 1 to 71084 (reading point number) nc: -32767 to +32767 (reading data ideal signal "1" = 1000)    |
|              | Q Phase Data<br>(Constellation) |                          | QCONST? na,nb                                                                                                                             | nc(1),nc(2),,nc(nb) | na: 0 to 71083 (Data reading address) nb: 1 to 71084 (reading point number) nc: -32767 to +32767 (reading data ideal signal "1" = 1000)    |
|              | I Phase Data<br>(Eye Diagram)   | - $  nc(1) nc(2) nc(nh)$ | *1 na: 0 to 71083 (Data reading address) nb: 1 to 71084 (Reading point number) nc: -32767 to +32767 (Reading data ideal signal "1" =1000) |                     |                                                                                                                                            |
| Wave<br>Data | Q Phase Data<br>(Eye Diagram)   | I                        | QCONST?<br>EYE,na,nb                                                                                                                      | nc(1),nc(2),,nc(nb) | *1 na: 0 to 71083 (Data reading address) nb: 1 to 71084 (Reading point number) nc: -32767 to +32767 (Reading data ideal signal "1" = 1000) |
|              | Phase vs. Chip                  |                          | PHSYM? na,nb                                                                                                                              | nc(1),nc(2),,nc(nb) | *1 na: 1 to 1367 (Data reading address) nb: 1 to 1367 (Reading point number) nc: -32767 to +32767 (Reading data ideal signal "1" = 100)    |
|              | EVM vs. Chip                    | _                        | EVMSYM?<br>na,nb                                                                                                                          | nc(1),nc(2),,nc(nb) | *1 na: 1 to 1367 (Data reading address) nb: 1 to 1367 (Reading point number) nc: 0 to 32767 (Reading data ideal signal "1" = 100)          |

<sup>\*1:</sup> IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)

 $<sup>\</sup>verb|*2: IEEE802.11a|, HiSWANa|, HiperLAN2|, IEEE802.11g| (ERP-OFDM)|, IEEE802.11g| (DSSS-OFDM)|$ 

### Modulation Analysis (continued.)

| Function | Item                      | Program<br>Message | Query Message  | Response Message    | Remarks                                                                                                                       |
|----------|---------------------------|--------------------|----------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------|
|          | EVM vs.<br>Symbol         | I                  | EVMSYM? na,nb  | nc(1),nc(2),,nc(nb) | *2 na: 0 to 4095 (Reading start-symbol) nb: 1 to 4096 (Reading point number) nc: 0 to 32768 (Reading data 1% = 100)           |
| Wave     | EVM vs.<br>Sub-carrier    | I                  | EVMSUB? na,nb  | nc(1),nc(2),,nc(nb) | *2 na: 0 to 51 (Data reading address) nb: 1 to 52 (Reading point number) nc: 0 to 32768 (Reading data 1% = 100)               |
| Data     | Phase Error vs.<br>Symbol | I                  | PHSYM? na,nb   | nc(1),nc(2),,nc(nb) | *2 na: 0 to 4095 (Reading start-symbol) nb: 1 to 4096 (Reading point number) nc: -32767 to +32767 (Reading data 1 deg. = 100) |
|          | Spectrum<br>Flatness      | _                  | SPFLAT? na, nb | nc(1),nc(2),,nc(nb) | na: 0 to 51 (Reading start address) nb: 1 to 52 (Reading point number) nc: - 32767 to +32767 (Reading data 1 dB=100)          |

<sup>\*1:</sup> IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)

 $<sup>\</sup>hbox{$^*2$: IEEE802.11a, HiSWANa, HiperLAN2, IEEE802.11g (ERP-OFDM), IEEE802.11g (DSSS-OFDM)$}$ 

## 6.5 RF Power

The list below shows the correspondence between the external control commands and the reading of the setting items and measured results on the RF Power screen.

| Function       | Item      | Program Message        | Query Message      | Response<br>Message | Remarks                                                                                                                                                                                              |
|----------------|-----------|------------------------|--------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Trace Format   | Slot      | TRFORM_RFPWR<br>SLOT   | TRFORM_RFPWR?      | SLOT                |                                                                                                                                                                                                      |
| Trace Format   | Transient | TRFORM_RFPWR<br>TRNSNT | TRFORM_RFPWR?      | TRNSNT              |                                                                                                                                                                                                      |
| Display Ref.   | Max       | DISP_REFLVL MAX        | DISP_REFLVL?       | MAX                 |                                                                                                                                                                                                      |
| Level          | Average   | DISP_REFLVL AVE        | DISP_REFLVL?       | AVE                 |                                                                                                                                                                                                      |
| Transient Time | e Scale   | TRANSSCALE n           | TRANSSCALE?        | N                   | n: 8 to 40                                                                                                                                                                                           |
| mt Dat         | С D       | TRANSREFPWR<br>TOTAL   | TRANSREFPWR?       | TOTAL               |                                                                                                                                                                                                      |
| Transient Re   | i.Power   | TRANSREFPWR<br>RAMP    | TRANSREFPWR?       | RAMP                |                                                                                                                                                                                                      |
| Smoothing      | On        | SMOFLT ON              | SMOFLT?            | ON                  |                                                                                                                                                                                                      |
| Filter         | Off       | SMOFLT OFF             | SMOFLT?            | OFF                 |                                                                                                                                                                                                      |
|                | Normal    | STRG_RFPWR NRM         | STRG_RFPWR?        | NRM                 |                                                                                                                                                                                                      |
| Storage Mode   | Average   | STRG_RFPWR AVG         | STRG_RFPWR?        | AVG                 |                                                                                                                                                                                                      |
|                | Overwrite | STRG_RFPWR OVER        | STRG_RFPWR?        | OVER                |                                                                                                                                                                                                      |
| Average Count  | ,         | AVR_RFPWR n            | AVR_RFPWR?         | n                   | n: 2 to 999                                                                                                                                                                                          |
| Refresh        | Every     | INTVAL_RFPWR<br>EVERY  | INTVAL_RFPWR?      | EVERY               |                                                                                                                                                                                                      |
| Interval       | Once      | INTVAL_RFPWR<br>ONCE   | INTVAL_RFPWR?      | ONCE                |                                                                                                                                                                                                      |
| Analysis Lengt | ch        | ANLYLEN_RFPWR n        | ANLYLEN_<br>RFPWR? | n                   | n: 1 to 1367<br>(IEEE802.11a,<br>HiperLAN2,<br>HiSWANa,<br>IEEE802.11g<br>(ERP-OFDM))<br>1 to 1300<br>(IEEE802.11g<br>(DSSS-OFDM))<br>256 to 4096<br>(IEEE802.11b,<br>IEEE802.11g<br>(ERP-DSSS/CCK)) |
| Ramp-down      | On        | RMPDET ON              | RMPDET?            | ON                  |                                                                                                                                                                                                      |
| Detection      | Off       | RMPDET OFF             | RMPDET?            | OFF                 |                                                                                                                                                                                                      |
| Preamble       | On        | PRMBL_SRCH ON          | PRMBL_SRCH?        | ON                  |                                                                                                                                                                                                      |
| Search         | Off       | PRMBL_SRCH OFF         | PRMBL_SRCH?        | OFF                 |                                                                                                                                                                                                      |
| Detection Leve | 1         | BRST_DETLVL r          | BRST_DETLVL?       | r                   | r: -20 to 0                                                                                                                                                                                          |

#### RF Power (continued.)

| Function              | Item                                                                                                                                                                | Program Message     | Query Message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Response<br>Message | Remarks                                                                                                                                                                                                           |
|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Detection Offs        | set                                                                                                                                                                 | BRST_DETOFFSET t    | BRST_<br>DETOFFSET?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t                   | t: -2 to +2                                                                                                                                                                                                       |
|                       | dB                                                                                                                                                                  | UNIT_RFPWR DB       | UNIT_RFPWR?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DB                  |                                                                                                                                                                                                                   |
| Unit                  | dBm                                                                                                                                                                 | UNIT_RFPWR DBM      | UNIT_RFPWR?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DBM                 |                                                                                                                                                                                                                   |
|                       | %                                                                                                                                                                   | UNIT_RFPWR PC       | ### Content of the co |                     |                                                                                                                                                                                                                   |
| Adjust Range          | 1                                                                                                                                                                   | ADJRNG              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                   |
|                       | Level<br>Calibration                                                                                                                                                | LVLCAL              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                   |
| Calibration           | Pre-selector<br>Tuning                                                                                                                                              | PSLTUNE             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                   |
|                       | ffset BRST_DETOFFSET t BRST_ DETOFFSET? t DETOFFSET? t DETOFFSET? t DETOFFSET?    dB UNIT_RFPWR DB UNIT_RFPWR? DB DBM   % UNIT_RFPWR PC UNIT_RFPWR? PC    ge ADJRNG | l: -10.00 to +10.00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                                                                                                                                                                                                                   |
|                       |                                                                                                                                                                     |                     | CALSTAT? LVL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n4,n5,n6,           | n1: 0: Normal termination 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time                                                                                      |
| Calibration<br>Status | Calibration using PM, Pre-selector                                                                                                                                  |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n4,n5,n6,           | n1: 0: Normal termination 1: Input limit 4: Abnormal signal 7: No input signal 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time n8: Calibration frequency [MHz] |
| Calibration Va        | alue                                                                                                                                                                | CALVAL 1            | CALVAL?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n,l                 | n: mode (0: Not calibrated, 1: Internal Calibration, 2: External writing 1: -10.00 to 10.00)                                                                                                                      |
| Marker                | Normal                                                                                                                                                              | MKR_RFPWR NRM       | MKR_RFPWR?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NRM                 |                                                                                                                                                                                                                   |
| Mode                  | Off                                                                                                                                                                 | MKR_RFPWR OFF       | MKR_RFPWR?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OFF                 |                                                                                                                                                                                                                   |

### RF Power (continued.)

| Function       | Item                 | Program Message | Query Message  | Response<br>Message    | Remarks                                                                                                                                |
|----------------|----------------------|-----------------|----------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Marker Positio | on                   | MKP_RFPWR n     | MKP_RFPWR?     | n                      | n: -20 to (signal length + 20) µsec [Trace Format: Slot] -4 to +4, (signal length-4) [Trace Format: Transient]                         |
| Marker Level   | _                    |                 | MKL_RFPWR?     | 1                      |                                                                                                                                        |
|                | TX Power             |                 | TXPWR?         | l, u                   |                                                                                                                                        |
|                | Maximum<br>Power     |                 | MAXPWR? DBM    | 1                      | dBm                                                                                                                                    |
|                |                      |                 | MAXPWR? WATT   | 1                      | W                                                                                                                                      |
| Measure        |                      |                 | MAXPWR? DB     | 1                      | dB                                                                                                                                     |
| Result         |                      |                 | MAXPWR? PC     | 1                      | %                                                                                                                                      |
|                | Carrier Off<br>Power |                 | OFFPWR?        | 11,12                  | 11: dBm<br>12: W                                                                                                                       |
|                | On/Off<br>Ratio      |                 | RATIO?         | 1                      | dB                                                                                                                                     |
| Transient Time | e                    |                 | TRANSTIME?     | t1,t2                  | t1: Ramp-on<br>t2: Ramp-down                                                                                                           |
| Wave Data      | TX Power vs. Time    |                 | PWRTIME? na,nb | nc(1),nc(2),<br>nc(nb) | na: 0 to 55279 (Data reading address) nb: 1 to 55280 (Reading point number) nc: -32767 to +32767 (Reading data ideal signal "1" = 100) |

## 6.6 Occupied Bandwidth

The list below shows the correspondence between the external control commands and the reading of the setting items and measured results on the Occupied Bandwidth screen.

| Function              | Item                                                        | Program Message | Query Message | Response<br>Message             | Remarks                                                                                                                                                                                                           |
|-----------------------|-------------------------------------------------------------|-----------------|---------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adjust Range          | •                                                           | ADJRNG          |               |                                 |                                                                                                                                                                                                                   |
| <b>,</b>              | Level<br>Calibration                                        | LVLCAL          |               |                                 |                                                                                                                                                                                                                   |
| Calibration           | Pre-selector<br>Tuning                                      | PSLTUNE         |               |                                 |                                                                                                                                                                                                                   |
|                       | Level<br>Calibration<br>using PM                            | PWRCAL          |               | 1                               | l: -10.00 to +10.00                                                                                                                                                                                               |
|                       | Level<br>Calibration                                        |                 | CALSTAT? LVL  | n1,n2,n3,n<br>4,n5,n6,n7        | n1: 0: Normal termination 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time                                                                                      |
| Calibration<br>Status | Level<br>Calibration<br>using PM,<br>Pre-selector<br>Tuning |                 |               | n1,n2,n3,n<br>4,n5,n6,n7<br>,n8 | n1: 0: Normal termination 1: Input limit 4: Abnormal signal 7: No input signal 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time n8: Calibration frequency [MHz] |
| Calibration Va        | alue                                                        | CALVAL 1        | CALVAL?       | n,l                             | n: mode (0: Not calibrated, 1: Internal Calibration, 2: External writing 1: -10.00 to 10.00)                                                                                                                      |

### Occupied Bandwidth (continued.)

| Function          | Item                | Program Message      | Query Message | Response<br>Message | Remarks                                                                     |
|-------------------|---------------------|----------------------|---------------|---------------------|-----------------------------------------------------------------------------|
| MDI DO            | Indoor<br>Standard  | TBLSTD_OBW STDIN     |               |                     |                                                                             |
| TELEC<br>Standard | Outdoor<br>Standard | TBLSTD_OBW<br>STDOUT |               |                     |                                                                             |
|                   | Standard            | TBLSTD_OBW STD       |               |                     |                                                                             |
| Storage           | Normal              | STRG_OBW NRM         | STRG_OBW?     | NRM                 |                                                                             |
| Mode              | Average             | STRG_OBW AVG         | STRG_OBW?     | AVG                 |                                                                             |
| Average Coun      | ıt                  | AVR_OBW n            | AVR_OBW?      | n                   | n: 2 to 999                                                                 |
| Refresh           | Every               | INTVAL_OBW EVERY     | INTVAL_OBW?   | EVERY               |                                                                             |
| Interval          | Once                | INTVAL_OBW ONCE      | INTVAL_OBW?   | ONCE                |                                                                             |
| ATT, Ref          | Auto                | ATTRLMD_OBW AUTO     | ATTRLMD_OBW?  | AUTO                |                                                                             |
| Level Mode        | Manual              | ATTRLMD_OBW MAN      | ATTRLMD_OBW?  | MAN                 |                                                                             |
| Ref Level         |                     | RL_OBW 1             | RL_OBW?       | 1                   | l: - 120 to +40 dBm<br>(Pre ampl: Off)<br>-140 to +20 dBm<br>(Pre ampl: On) |
| Attenuator        |                     | ATT_OBW 1            | ATT_OBW?      | 1                   | 1: 0 to 70<br>(MS2687A/MS2687B)<br>0 to 62 (other than<br>above)            |
| Attenuator        | Auto                | ATTMD_OBW AUTO       | ATTMD_OBW?    | AUTO                |                                                                             |
| Mode              | Manual              | ATTMD_OBW MAN        | ATTMD_OBW?    | MAN                 |                                                                             |
| RBW               |                     | RBW_OBW f            | RBW_OBW?      | f                   | f: 300 Hz to 20 MHz<br>(Normal)<br>10 Hz to 1 MHz<br>(Digital)              |
| RBW Type          | Normal              | RBD_OBW NRM          | RBD_OBW?      | NRM                 |                                                                             |
| Kbw Type          | Digital             | RBD_OBW DGTL         | RBD_OBW?      | DGTL                |                                                                             |
| VBW               |                     | VBW_OBW f            | VBW_OBW?      | f                   | f: 0 (OFF) to<br>3000000 Hz                                                 |
| NOW M. 1          | Auto                | VBM_OBW AUTO         | VBM_OBW?      | AUTO                |                                                                             |
| VBW Mode          | Manual              | VBM_OBW MAN          | VBM_OBW?      | MAN                 |                                                                             |
| VBW/RBW Ra        | atio                | VBR_OBW r            | VBR_OBW?      | r                   | r: 0.0001 to 100                                                            |
| Sweep Time        |                     | SWT_OBW t            | SWT_OBW?      | t                   | t: 10 to 1000000<br>ms (setting)<br>1000 to<br>100000000 µs<br>(response)   |
| Sweep Time        | Auto                | STM_OBW AUTO         | STM_OBW?      | AUTO                |                                                                             |
| Mode              | Manual              | STM_OBW MAN          | STM_OBW?      | MAN                 |                                                                             |
| Mode              |                     |                      | . –           | •                   |                                                                             |
| Data Points       | 1001                | DPTS_OBW 1001        | DPTS_OBW?     | 1001                |                                                                             |

#### Occupied Bandwidth (continued.)

| Function      | Item          | Program Message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Query Message | Response<br>Message | Remarks                                                                                                                                                                                                                                                                            |
|---------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | Positive Peak | Message   Mess | POS           |                     |                                                                                                                                                                                                                                                                                    |
|               | Sample        | DET_OBW SMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DET_OBW?      | SMP                 |                                                                                                                                                                                                                                                                                    |
|               | Negative Peak | DET_OBW NEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DET_OBW?      | NEG                 |                                                                                                                                                                                                                                                                                    |
| D             | Average       | DET_OBW AVG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DET_OBW?      | AVG                 |                                                                                                                                                                                                                                                                                    |
| Detection     | RMS           | DET_OBW RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DET_OBW?      | RMS                 | Valid only when<br>the Option04 is<br>installed while<br>RBW Mode is<br>Digital.                                                                                                                                                                                                   |
| Span          |               | SPAN_OBW f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SPAN_OBW?     | f                   | f: 20 to 200 MHz                                                                                                                                                                                                                                                                   |
| Span          | Span Width    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FSPAN_OBW?    | f                   | Hz                                                                                                                                                                                                                                                                                 |
| -             | _             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OCCBW?        | f                   | Hz                                                                                                                                                                                                                                                                                 |
|               | ODIII (0004)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OCCBW? 99     | f                   | Hz                                                                                                                                                                                                                                                                                 |
| Occupied      | OBW (99%)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OBW?          | f                   | Hz                                                                                                                                                                                                                                                                                 |
| Bandwidth     |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OBW? 99       | f                   | Hz                                                                                                                                                                                                                                                                                 |
|               | ODIII (0.00/) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OCCBW? 90     | f                   | Hz                                                                                                                                                                                                                                                                                 |
|               | OBW (90%)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OBW? 90       | f                   | Hz                                                                                                                                                                                                                                                                                 |
| Upper Limit   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •             | f                   | Hz                                                                                                                                                                                                                                                                                 |
| • •           |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OBWFREQ? +    | f                   | Hz                                                                                                                                                                                                                                                                                 |
| Lower Limit   |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OBWFREQ?      | f                   | Hz                                                                                                                                                                                                                                                                                 |
|               |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |               | f                   | Hz                                                                                                                                                                                                                                                                                 |
| Center (Upper | + Lower) / 2  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -             | f                   | Hz                                                                                                                                                                                                                                                                                 |
| Wave Data     | Spectrum      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =             | l1,l2,,<br>ln       | na: 0 to 1000 (Data reading address, Data Point: 1001 0 to 500 (Data reading address, Data Point: 501) nb: 1 to 1001 (Reading point number, Data Point: 1001) 1 to 501 (Reading point number, Data Point: 501) ln: n-th frequency axis sweep waveform data (Reading data 1 dB=100) |

# 6.7 Adjacent Channel Power

The list below shows the correspondence between the external control commands and the reading of the setting items and measured results on the Adjacent Channel Power screen.

| Function              | Item                                            | Program Message | Query Message                | Response<br>Message             | Remarks                                                                                                                                                                                                           |
|-----------------------|-------------------------------------------------|-----------------|------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adjust Range          | •                                               | ADJRNG          |                              |                                 |                                                                                                                                                                                                                   |
|                       | Level<br>Calibration                            | LVLCAL          |                              |                                 |                                                                                                                                                                                                                   |
| Calibration           | Pre-selector<br>Tuning                          | PSLTUNE         |                              |                                 |                                                                                                                                                                                                                   |
|                       | Level<br>Calibration<br>using PM                | PWRCAL          | PWRCAL?                      | 1                               | l: -10.00 to +10.00                                                                                                                                                                                               |
|                       | Level<br>Calibration                            |                 | CALSTAT? LVL                 | n1,n2,n3,<br>n4,n5,n6,<br>n7    | n1: 0: Normal termination 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time                                                                                      |
| Calibration<br>Status | Level Calibration using PM, Pre-selector Tuning |                 | CALSTAT? PSL<br>CALSTAT? PWR | n1,n2,n3,<br>n4,n5,n6,<br>n7,n8 | n1: 0: Normal termination 1: Input limit 4: Abnormal signal 7: No input signal 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time n8: Calibration frequency [MHz] |
| Calibration Va        | llue                                            | CALVAL 1        | CALVAL?                      | n,l                             | n: mode (0: Not calibrated, 1: Internal Calibration, 2: External writing 1: -10.00 to 10.00)                                                                                                                      |

#### Adjacent Channel Power (continued.)

| Function         | Item               | Program Message     | Query Message | Response<br>Message | Remarks                                                                       |
|------------------|--------------------|---------------------|---------------|---------------------|-------------------------------------------------------------------------------|
| G                | TELEC<br>(Indoor)  | TLCSTD_ADJ IN       | TLCSTD_ADJ?   | IN                  |                                                                               |
| Spectrum<br>Mask | TELEC<br>(Outdoor) | TLCSTD_ADJ OUT      | TLCSTD_ADJ?   | OUT                 |                                                                               |
|                  | Standard           | TBLSTD_ADJ STD      |               |                     |                                                                               |
| Ct M - 1         | Normal             | STRG_ADJ NRM        | STRG_ADJ?     | NRM                 |                                                                               |
| Storage Mode     | Average            | STRG_ADJ AVG        | STRG_ADJ?     | AVG                 |                                                                               |
| Average Count    | ,                  | AVR_ADJ n           | AVR_ADJ?      | n                   | n: 2 to 999                                                                   |
| Refresh          | Every              | INTVAL_ADJ<br>EVERY | INTVAL_ADJ?   | EVERY               |                                                                               |
| Interval         | Once               | INTVAL_ADJ ONCE     | INTVAL_ADJ?   | ONCE                |                                                                               |
| ATT, Ref         | Auto               | ATTRLMD_ADJ<br>AUTO | ATTRLMD_ADJ?  | AUTO                |                                                                               |
| Level Mode       | Manual             | ATTRLMD_ADJ<br>MAN  | ATTRLMD_ADJ?  | MAN                 |                                                                               |
| Ref Level        |                    | RL_ADJ 1            | RL_ADJ?       | 1                   | l: -120 to +40<br>dBm<br>(Pre ampl: Off)<br>-140 to +20 dBm<br>(Pre ampl: On) |
| Attenuator       |                    | ATT_ADJ l           | ATT_ADJ?      | 1                   | 1: 0 to 70<br>(MS2687A/MS2687B)<br>0 to 62<br>(other than above)              |
| Attenuator       | Auto               | ATTMD_ADJ AUTO      | ATTMD_ADJ?    | AUTO                |                                                                               |
| Mode             | Manual             | ATTMD_ADJ MAN       | ATTMD_ADJ?    | MAN                 |                                                                               |
| RBW              |                    | RBW_ADJ f           | RBW_ADJ?      | f                   | f: 300 Hz to 20 MHz<br>(Normal)<br>10 Hz to 1 MHz<br>(Digital)                |
| DDIII M          | Normal             | RBD_ADJ NRM         | RBD_ADJ?      | NRM                 |                                                                               |
| RBW Type         | Digital            | RBD_ADJ DGTL        | RBD_ADJ?      | DGTL                |                                                                               |
| VBW              |                    | VBW_ADJ f           | VBW_ADJ?      | f                   | f: 0 (OFF) to<br>3000000 Hz                                                   |
| X7DXX M 1 .      | Auto               | VBM_ADJ AUTO        | VBM_ADJ?      | AUTO                |                                                                               |
| VBW Mode         | Manual             | VBM_ADJ MAN         | VBM_ADJ?      | MAN                 |                                                                               |
| VBW/RBW Rat      | tio                | VBR_ADJ r           | VBR_ADJ?      | r                   | r: 0.0001 to 100                                                              |
| Sweep Time       |                    | SWT_ADJ t           | SWT_ADJ?      | t                   | t: 10 to 1000000 ms<br>(setting)<br>1000 to 100000000<br>µs (response)        |
| Sweep Time       | Auto               | STM_ADJ AUTO        | STM_ADJ?      | AUTO                |                                                                               |
| Mode             | Manual             | STM_ADJ MAN         | STM_ADJ?      | MAN                 |                                                                               |
|                  | 1001               | DPTS_ADJ 1001       | DPTS_ADJ?     | 1001                |                                                                               |
| Data Points      | 501                | DPTS_ADJ 501        | DPTS_ADJ?     | 501                 |                                                                               |

### Adjacent Channel Power (continued.)

| Function     | Item                                   | Program Message                                                                                                                            | Query Message | Response<br>Message                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Remarks                                                                          |
|--------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|              | Positive Peak                          | DET_ADJ POS                                                                                                                                | DET_ADJ?      | POS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |
|              | Sample                                 | DET_ADJ SMP                                                                                                                                | DET_ADJ?      | SMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |
|              | Negative Peak                          | DET_ADJ NEG                                                                                                                                | DET_ADJ?      | NEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |
|              | Program Message   Query Message   Mess | AVG                                                                                                                                        |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |
| Detection    | RMS                                    | DET_ADJ RMS                                                                                                                                | DET_ADJ?      | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Valid only when the<br>Option04 is<br>installed while<br>RBW Mode is<br>Digital. |
|              | dBm                                    | UNIT_ADJ DBM                                                                                                                               | UNIT_ADJ?     | DBM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |
|              | mW                                     | UNIT_ADJ MW                                                                                                                                | UNIT_ADJ?     | MW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |
| Unit         | uW                                     | UNIT_ADJ UW                                                                                                                                | UNIT_ADJ?     | UW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |
|              | nW                                     | UNIT_ADJ NW                                                                                                                                | UNIT_ADJ?     | NW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |
|              | dB                                     | UNIT_ADJ DB                                                                                                                                | UNIT_ADJ?     | POS   SMP   NEG   AVG   RMS   SMP   NEG   AVG   RMS   SMP   NEG   AVG   RMS   SMP   NEG   NEG |                                                                                  |
|              | N. 1 N. 1                              | MKR_ADJ NRM         MKR_ADJ?         NRM           MKR_ADJ OFF         MKR_ADJ?         OFF           MKP ADJ n         MKP ADJ?         n | NRM           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |
|              | Marker Mode                            | MKR_ADJ OFF                                                                                                                                | MKR_ADJ?      | OFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                  |
| Marker       | Marker                                 | MKP_ADJ n                                                                                                                                  | MKP_ADJ?      | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n: 45 to 455 (501)<br>90 to 910 (1001)                                           |
| Marker       |                                        | MKRS_ADJ f                                                                                                                                 | MKRS_ADJ?     | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f: -41 to +41 MHz                                                                |
|              |                                        | MKN_ADJ f                                                                                                                                  | MKN_ADJ?      | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | f: -41 to +41 MHz                                                                |
|              | Low2                                   |                                                                                                                                            | ADJCH? LOW2   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
|              |                                        |                                                                                                                                            |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
|              | Low1                                   |                                                                                                                                            | ADJCH? LOW1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
|              |                                        |                                                                                                                                            |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
|              | TT 1                                   |                                                                                                                                            | ADJCH? UP1    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
|              | Upl                                    |                                                                                                                                            | ADJCH? UP1,u  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
|              | 11.0                                   |                                                                                                                                            | ADJCH? UP2    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
| Adjacent     | Negative Peak   DET_ADJ NEG   DET_ADJ? | 1                                                                                                                                          |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                  |
|              |                                        |                                                                                                                                            | CHPWR? LOW2   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
| 1 ower       | Low2                                   |                                                                                                                                            |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
|              |                                        |                                                                                                                                            | CHPWR? LOW1   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
|              | Low1                                   |                                                                                                                                            |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
|              | TT 4                                   |                                                                                                                                            | ·             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
|              | Upl                                    |                                                                                                                                            |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
|              | 11.0                                   |                                                                                                                                            |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
|              | Up2                                    |                                                                                                                                            |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
|              |                                        |                                                                                                                                            |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |
| Marker Level | Spectrum                               |                                                                                                                                            |               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                  |

### Adjacent Channel Power (continued.)

| Function  | Item                   | Program Message | Query Message       | Response<br>Message | Remarks                                                                                                                                                                                                                                                                               |
|-----------|------------------------|-----------------|---------------------|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wave Data | Spectrum<br>(All)      |                 | SPECT_ADJALL?       | l 1,l2,ln           | na: 0 to 1000 (Data reading address, Data Point: 1001 0 to 500 (Data reading address, Data Point: 501 nb: 1 to 1001 (Reading point number, Data Point: 1001) 1 to 501 (Reading point number, Data Point: 501) ln: n-th frequency axis sweep waveform data (Reading data 1 dB = 100)   |
|           | Spectrum<br>(Separate) |                 | SPECT_ADJSEP?       | l 1,l2,ln           | na: 0 to 5004 (Data reading address, Data Point: 1001 0 to 2504 (Data reading address, Data Point: 501 nb: 1 to 5005 (Reading point number, Data Point: 1001) 1 to 2505 (Reading point number, Data Point: 501) ln: n-th frequency axis sweep waveform data (Reading data 1 dB = 100) |
|           | Integral               |                 | INTEG_ADJ?<br>na,nb | l 1,l2,ln           | na: 90 to 910 (Data reading address, Data Point: 1001 45 to 455 (Data reading address, Data Point: 501 nb: 1 to 821 (Reading point number, Data Point: 1001) 1 to 411 (Reading point number, Data Point: 501) ln: n-th frequency axis sweep waveform data (Reading data 1 dB = 100)   |

# 6.8 Spectrum Mask

The list below shows the correspondence between the external control commands and the reading of the setting items and measured results on the Spectrum Mask screen.

| Function              | Item                                                        | Program Message  | Query Message                | Response<br>Message             | Remarks                                                                                                                                                                                                           |
|-----------------------|-------------------------------------------------------------|------------------|------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adjust Rang           | e                                                           | ADJRNG           |                              |                                 |                                                                                                                                                                                                                   |
|                       | Level<br>Calibration                                        | LVLCAL           |                              |                                 |                                                                                                                                                                                                                   |
| Calibration           | Pre-selector<br>Tuning                                      | PSLTUNE          |                              |                                 |                                                                                                                                                                                                                   |
|                       | Level<br>Calibration<br>using PM                            | PWRCAL           | PWRCAL?                      | 1                               | l: -10.00 to +10.00                                                                                                                                                                                               |
| Standard              |                                                             | TBLSTD_SMASK STD |                              |                                 |                                                                                                                                                                                                                   |
|                       | Level<br>Calibration                                        |                  | CALSTAT? LVL                 | n1,n2,n3,n<br>4,n5,n6,n7        | n1: 0: Normal termination 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time                                                                                      |
| Calibration<br>Status | Level<br>Calibration<br>using PM,<br>Pre-selector<br>Tuning |                  | CALSTAT? PSL<br>CALSTAT? PWR | n1,n2,n3,n<br>4,n5,n6,n7<br>,n8 | n1: 0: Normal termination 1: Input limit 4: Abnormal signal 7: No input signal 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time n8: Calibration frequency [MHz] |
| Calibration Value     |                                                             | CALVAL 1         | CALVAL?                      | n,l                             | n: mode (0: Not calibrated, 1: Internal Calibration, 2: External writing 1: -10.00 to 10.00)                                                                                                                      |

### Spectrum Mask (continued.)

| Function             | Item     | Program Message          | Query Message   | Response<br>Message | Remarks                                                                          |
|----------------------|----------|--------------------------|-----------------|---------------------|----------------------------------------------------------------------------------|
| Select               | Standard | SLCTTEMP_SMASK STD       | SLCTTEMP_SMASK? | STD                 |                                                                                  |
| Template             | User     | SLCTTEMP_SMASK USER      | SLCTTEMP_SMASK? | USER                |                                                                                  |
| D: 1                 | Level    | DISPTYPE_SMASK LVL       | DISPTYPE_SMASK? | LVL                 |                                                                                  |
| Display<br>Data Type | Margin   | DISPTYPE_SMASK<br>MARGIN | DISPTYPE_SMASK? | MARGIN              |                                                                                  |
| Storage              | Normal   | STRG_SMASK NRM           | STRG_SMASK?     | NRM                 |                                                                                  |
| Mode                 | Average  | STRG_SMASK AVG           | STRG_SMASK?     | AVG                 |                                                                                  |
| Average Cou          | nt       | AVR_SMASK n              | AVR_SMASK?      | n                   | n: 2 to 999                                                                      |
| Refresh              | Every    | INTVAL_SMASK EVERY       | INTVAL_SMASK?   | EVERY               |                                                                                  |
| Interval             | Once     | INTVAL_SMASK ONCE        | INTVAL_SMASK?   | ONCE                |                                                                                  |
| ATT, Ref             | Auto     | ATTRLMD_SMASK AUTO       | ATTRLMD_SMASK?  | AUTO                |                                                                                  |
| Level Mode           | Manual   | ATTRLMD_SMASK MAN        | ATTRLMD_SMASK?  | MAN                 |                                                                                  |
| Ref Level            |          | RL_SMASK 1               | RL_SMASK?       | 1                   | l: -120 to<br>+40 dBm<br>(Pre ampl: Off)<br>-140 to +20<br>dBm<br>(Pre ampl: On) |
| Attenuator           |          | ATT_SMASK 1              | ATT_SMASK?      | 1                   | 1: 0 to 70<br>(MS2687A/<br>MS2687B)<br>0 to 62 (other<br>than above)             |
| Attenuator           | Auto     | ATTMD_SMASK AUTO         | ATTMD_SMASK?    |                     | ·                                                                                |
| Mode                 | Manual   | ATTMD_SMASK MAN          | ATTMD_SMASK?    |                     |                                                                                  |
| RBW                  |          | RBW_SMASK f              | RBW_SMASK?      | f                   | f: 300 Hz to 20<br>MHz (Normal)<br>10 Hz to 1 MHz<br>(Digital)                   |
|                      | Normal   | RBD_SMASK NRM            | RBD_SMASK?      |                     |                                                                                  |
| RBW Type             | Digital  | RBD_SMASK DGTL           | RBD_SMASK?      |                     |                                                                                  |
| VBW                  | •        | VBW_SMASK f              | VBW_SMASK?      | f                   | f: 0 (OFF) to<br>3000000 Hz                                                      |
| TIDIU M. 1           | Auto     | VBM_SMASK AUTO           | VBM_SMASK?      |                     |                                                                                  |
| VBW Mode             | Manual   | VBM_SMASK MAN            | VBM_SMASK?      |                     |                                                                                  |
| VBW/RBW R            | Ratio    | VBR_SMASK r              | VBR_SMASK?      | r                   | r: 0.0001 to<br>100                                                              |
| Sweep Time           |          | SWT_SMASK t              | SWT_SMASK?      | t                   | t: 10 to 1000000<br>ms (setting)<br>1000 to<br>100000000 µs<br>(response)        |
| Sweep Time           | Auto     | STM_SMASK AUTO           | STM_SMASK?      | AUTO                |                                                                                  |
| Mode                 | Manual   | STM_SMASK MAN            | STM_SMASK?      | MAN                 |                                                                                  |

#### Spectrum Mask (continued.)

| Function          | Item                      | Program Message   | Query Message                                                 | Response<br>Message                 | Remarks                                                                                |
|-------------------|---------------------------|-------------------|---------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------|
|                   | Positive<br>Peak          | DET_SMASK POS     | DET_SMASK?                                                    | POS                                 |                                                                                        |
|                   | Sample                    | DET_SMASK SMP     | DET_SMASK?                                                    | SMP                                 |                                                                                        |
|                   | Negative<br>Peak          | DET_SMASK NEG     | DET_SMASK?                                                    | NEG                                 |                                                                                        |
| D                 | Average                   | DET_SMASK AVG     | DET_SMASK?                                                    | AVG                                 |                                                                                        |
| Detection         | RMS                       | DET_SMASK RMS     | DET_SMASK?                                                    | RMS                                 | Valid only<br>when the<br>Option04 is<br>installed<br>while RBW<br>Mode is<br>Digital. |
|                   | Level at 30<br>MHz offset | TEMPLVL_SMASK 1,1 | TEMPLVL_SMASK? 1                                              | 1                                   |                                                                                        |
| Setup<br>Template | Level at 20<br>MHz offset | TEMPLVL_SMASK 2,1 | TEMPLVL_SMASK? 2                                              | 1                                   |                                                                                        |
|                   | Level at 11<br>MHz offset | TEMPLVL_SMASK 3,1 | TEMPLVL_SMASK? 3                                              | 1                                   |                                                                                        |
|                   | Line1                     | TEMPLVL_SMASK 1,l | TEMPLVL_SMASK? 1                                              | 1                                   |                                                                                        |
|                   | Line2                     | TEMPLVL_SMASK 2,l | TEMPLVL_SMASK? 2                                              | 1                                   |                                                                                        |
|                   | dBm                       | UNIT_SMASK DBM    | UNIT_SMASK?                                                   | DBM                                 |                                                                                        |
|                   | mW                        | UNIT_SMASK MW     | UNIT_SMASK?                                                   | MW                                  |                                                                                        |
| Unit              | uW                        | UNIT_SMASK UW     | UNIT_SMASK?                                                   | UW                                  |                                                                                        |
|                   | nW                        | UNIT_SMASK NW     | UNIT_SMASK?                                                   | NW                                  |                                                                                        |
|                   | dB                        | UNIT_SMASK DB     | UNIT_SMASK?                                                   | DB                                  |                                                                                        |
| Peak Data         | Peak Data                 |                   | PEAK_SMASK? Ln,u<br>PEAK_SMASK? Un,u<br>PEAK_SMASK?<br>PEAK,u | f,l,j                               |                                                                                        |
|                   |                           |                   | PEAK_SMASK?<br>ALL,u                                          | f1,l1,j1,f2,<br>l2,j2, f4,<br>l4,j4 |                                                                                        |
| Peak Level        | Peak Level                |                   | PEAK_SMASK?                                                   | 1                                   |                                                                                        |
| Template          | Template<br>Judgement     |                   | TEMPPASS_SMASK?                                               | j                                   |                                                                                        |
| Marker<br>Level   | Spectrum                  |                   | MKL_SMASK? MKL_SMASK? u                                       | 1                                   |                                                                                        |
| Marker            | Normal                    | MKR_SMASK NRM     | MKR_SMASK?                                                    | NRM                                 |                                                                                        |
| Mode              | Off                       | MKR SMASK OFF     | MKR_SMASK?                                                    | OFF                                 |                                                                                        |

### Spectrum Mask (continued.)

| Function           | Item      | Program Message | Query Message | Response<br>Message | Remarks                                                                                                                    |
|--------------------|-----------|-----------------|---------------|---------------------|----------------------------------------------------------------------------------------------------------------------------|
|                    | Point     | MKP_SMASK n     | MKP_SMASK?    | n                   | n: 0 to 1000                                                                                                               |
| Marker<br>Position | Frequency | MKRS_SMASK f    | MKRS_SMASK?   | f                   | f: -30 to +30<br>MHz<br>(IEEE802.11b,<br>IEEE802.11g<br>(ERP-DSSS/CC<br>K))<br>-40 to +40<br>MHz (other                    |
|                    |           |                 |               |                     | than above)                                                                                                                |
| Position           | Frequency | MKN_SMASK f     | MKN_SMASK?    | f                   | f: -30 to +30<br>MHz<br>(IEEE802.11b,<br>IEEE802.11g<br>(ERP-DSSS/CC<br>K))<br>-40 to +40 MHz                              |
|                    |           |                 |               |                     | (other than above)                                                                                                         |
| Wave Data          | Spectrum  |                 | SPECT_SMASK?  | l 1,l2,ln           | na: 0 to 1000 (Data reading address) nb: 1 to 1001 (Reading point number) ln: n-th waveform data (Reading data 1 dB = 100) |

# 6.9 Spurious Emission

The list below shows the correspondence between the external control commands and the reading of the setting items and measured results on the Spurious Emission screen.

| Function           | Item                                                        | Program Message | Query<br>Message                   | Response<br>Message         | Remarks                                                                                                                                                                                                           |
|--------------------|-------------------------------------------------------------|-----------------|------------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adjust Range       | •                                                           | ADJRNG          |                                    |                             |                                                                                                                                                                                                                   |
|                    | Level<br>Calibration                                        | LVLCAL          |                                    |                             |                                                                                                                                                                                                                   |
| Calibration        | Pre-selector<br>Tuning                                      | PSLTUNE         |                                    |                             |                                                                                                                                                                                                                   |
|                    | Level<br>Calibration<br>using PM                            | PWRCAL          | PWRCAL?                            | 1                           | l: -10.00 to +10.00                                                                                                                                                                                               |
|                    | Level<br>Calibration                                        |                 | CALSTAT?<br>LVL                    | n1,n2,n3,n4,<br>n5,n6,n7    | n1: 0: Normal termination 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time                                                                                      |
| Calibration Status | Level<br>Calibration<br>using PM,<br>Pre-selector<br>Tuning |                 | CALSTAT?<br>PSL<br>CALSTAT?<br>PWR | n1,n2,n3,n4,<br>n5,n6,n7,n8 | n1: 0: Normal termination 1: Input limit 4: Abnormal signal 7: No input signal 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time n8: Calibration frequency [MHz] |

| Fund          | ction      | Item                        | Program Message          | Query<br>Message       | Response<br>Message | Remarks                                                                                      |
|---------------|------------|-----------------------------|--------------------------|------------------------|---------------------|----------------------------------------------------------------------------------------------|
| Calibration   | ı Value    |                             | CALVAL 1                 | CALVAL?                | n,l                 | n: mode (0: Not calibrated, 1: Internal Calibration, 2: External writing 1: -10.00 to 10.00) |
|               |            | Spot                        | DSPL<br>SPURIOUS,SPOT    |                        | SPURIOUS,<br>SPOT   |                                                                                              |
| Spurious M    | lode       | Search                      | DSPL SPURIOUS,<br>SEARCH | DSPL?                  | SPURIOUS,<br>SEARCH |                                                                                              |
|               |            | Sweep                       | DSPL<br>SPURIOUS,SWEEP   |                        | SPURIOUS,<br>SWEEP  |                                                                                              |
|               |            | RBW,VBW,<br>SWT<br>(Search) | VIEW_SPU BWSWT           |                        | BWSWT               |                                                                                              |
| View Select   | ;          | REF_LVL,<br>ATT             | VIEW_SPU REFATT          | VIEW_SPU?              | REFATT              |                                                                                              |
|               | Judgement  | VIEW_SPU JDG                | ]                        | JDG                    |                     |                                                                                              |
|               |            | RBW, VBW,<br>SWT (Meas)     | VIEW_SPU LVLMS           |                        | LVLMS               |                                                                                              |
| XX            | D: 1       | Off                         | WAVEFORM_SPU<br>OFF      | WAVEFORM_              | OFF                 |                                                                                              |
| Waveform I    | Display    | On                          | WAVEFORM_SPU<br>ON       | SPU?                   | ON                  |                                                                                              |
| Waveform l    | Frq Tbl No |                             | WAVETBLNO_SPU<br>Fn      | WAVETBLNO _SPU?        | Fn                  | Fn: F1 to F15                                                                                |
| C. M          | 1          | Normal                      | STRG_SPU NRM             | CED C CDITO            | NRM                 |                                                                                              |
| Storage Mo    | ae         | Average                     | STRG_SPU AVG             | STRG_SPU?              | AVG                 |                                                                                              |
| Average Co    | unt        |                             | AVR_SPU n                | AVR_SPU?               | n                   | n: 2 to 999                                                                                  |
| D. C l. I . 4 | 1          | Every                       | INTVAL_SPU<br>EVERY      | INTERVAL CIDITO        | EVERY               |                                                                                              |
| Refresh Int   | ervai      | Once                        | INTVAL_SPU<br>ONCE       | INTVAL_SPU?            | ONCE                |                                                                                              |
|               |            | dBm                         | UNIT_SPU DBM             |                        | DBM                 |                                                                                              |
| TT . "4       |            | dB                          | UNIT_SPU DB              | LINIO CDIIO            | DB                  |                                                                                              |
| Unit          |            | xW/MHz                      | UNIT_SPU W_MHZ           | UNIT_SPU?              | W_MHZ               |                                                                                              |
|               |            | xW                          | UNIT_SPU W               |                        | W                   |                                                                                              |
| Pre-selector  |            | Normal                      | BAND 0                   | DANDO                  | 0                   |                                                                                              |
|               |            | Spurious                    | BAND 1                   | BAND?                  | 1                   |                                                                                              |
|               | T-1.1.     | Frequency                   | TBLFREQ_SPU<br>SPOT,Fn,f | TBLFREQ_               | £                   | F: 9 kHz to<br>upper limit                                                                   |
| Spot Ta       | Table      | Harmonics                   | TBLFREQ_SPU<br>SPOT,HRM  | SPU?<br>SPOT,Fn        | f                   | frequency of main unit                                                                       |
|               | RBW        | •                           | TBLRBW_SPU<br>SPOT,Fn,f  | TBLRBW_SPU?<br>SPOT,Fn | f                   | F: 300 Hz to 20<br>MHz                                                                       |

| ı    | Function   | Item             | Program Message             | Query<br>Message       | Response<br>Message | Remarks                                                                    |
|------|------------|------------------|-----------------------------|------------------------|---------------------|----------------------------------------------------------------------------|
|      | RBW Mode   | Auto             | TBLRBWMD_SPU<br>SPOT,AUTO   | TBLRBWMD_              | AUTO                |                                                                            |
|      | KBW Mode   | Manual           | TBLRBWMD_SPU<br>SPOT,MAN    | SPU? SPOT              | MAN                 |                                                                            |
|      | DDW True   | Normal           | TBLRBWTP_SPU<br>SPOT,NRM    | TBLRBWTP_              | NRM                 |                                                                            |
|      | RBW Type   | Digital          | TBLRBWTP_SPU<br>SPOT,DGTL   | SPU? SPOT              | DGTL                |                                                                            |
|      | VBW        |                  | TBLVBW_SPU<br>SPOT,Fn,f     | TBLVBW_SPU?<br>SPOT,Fn | f                   | F: 0 Hz to 3 MHz                                                           |
|      | VBW Mode   | Auto             | TBLVBWMD_SPU<br>SPOT,AUTO   | TBLVBWMD_              | AUTO                |                                                                            |
|      | VBW Mode   | Manual           | TBLVBWMD_SPU<br>SPOT,MAN    | SPU? SPOT              | MAN                 |                                                                            |
|      | VBW/RBW R  | atio             | TBLVBWRT_SPU<br>SPOT,r      | TBLVBWRT_<br>SPU? SPOT | r                   | R: 0.0001 to 100                                                           |
|      | Sweep Time |                  | TBLSWT_SPU<br>SPOT,Fn,t     | TBLSWT_SPU?<br>SPOT,Fn | t                   | T: 10 ms to 1000 s                                                         |
|      | Sweep Time | Auto             | TBLSWTMD_SPU<br>SPOT,AUTO   | TBLSWTMD_<br>SPU? SPOT | AUTO                |                                                                            |
| Spot | Mode       | Manual           | TBLSWTMD_SPU<br>SPOT,MAN    |                        | MAN                 |                                                                            |
|      | Ref Level  |                  | TBLRL_SPU<br>SPOT,Fn,l      | TBLRL_SPU?<br>SPOT,Fn  | 1                   | L: -120 to +40<br>dBm                                                      |
|      | Attenuator |                  | TBLATT_SPU<br>SPOT,Fn,l     | TBLATT_SPU?<br>SPOT,Fn | 1                   | L: 0 to 70 dB<br>(MS2687A/MS268<br>7B)<br>0 to 62 dB (other<br>than above) |
|      | ATT & Rel  | Auto             | TBLATTRLMD_SPU<br>SPOT,AUTO | TBLATTRLMD             | AUTO                |                                                                            |
|      | Level Mode | Manual           | TBLATTRLMD_SPU<br>SPOT,MAN  | _SPU? SPOT             | MAN                 |                                                                            |
|      | Attenuator | Auto             | TBLATTMD_SPU<br>SPOT,AUTO   | TBLATTMD_              | AUTO                |                                                                            |
|      | Mode       | Manual           | TBLATTMD_SPU<br>SPOT,MAN    | SPU? SPOT              | MAN                 |                                                                            |
|      |            | Positive<br>Peak | DET_SPU SPOT,POS            |                        | POS                 |                                                                            |
|      | <b>.</b>   | Sample           | DET_SPU SPOT,SMP            | DET_SPU?               | SMP                 |                                                                            |
|      | Detection  | Negative         | DET_SPU SPOT,NEG            | SPOT                   | NEG                 |                                                                            |
|      |            | Average          | DET_SPU SPOT,AVG            |                        | AVG                 |                                                                            |
|      |            | RMS              | DET_SPU SPOT,RMS            |                        | RMS                 |                                                                            |

| Fu   | ınction   | Item                         | Program Message             | Query Message                                            | Response<br>Message | Remarks                                              |
|------|-----------|------------------------------|-----------------------------|----------------------------------------------------------|---------------------|------------------------------------------------------|
|      | Limit     | Absolute                     | SPULMT<br>SPOT,Fn,l,ABS,u   | SPULMT?<br>SPOT,Fn,ABS,u                                 | 1                   | L: -100 to<br>+100 dBm<br>0.001 to 999.999<br>xW/MHz |
|      |           | Relative                     | SPULMT SPOT,<br>Fn,l,REL,DB | SPULMT?<br>SPOT,Fn,REL,D<br>B                            | 1                   | Fn: F1 to F15                                        |
|      |           | RBW,VBW,S<br>WT              | TBLVIEW_SPU<br>SPOT,BWSWT   |                                                          | BWSWT               |                                                      |
|      | View      | Ref_Level,<br>Att            | TBLVIEW_SPU<br>SPOT,REFATT  | TBLVIEW_                                                 | REFATT              |                                                      |
|      | Select    | Limit (dB)                   | TBLVIEW_SPU<br>SPOT,LMTDB   | SPU? SPOT                                                | LMTDB               |                                                      |
|      |           | Limit (xW)                   | TBLVIEW_SPU<br>SPOT,LMTW    |                                                          | LMTW                |                                                      |
|      | Judgement | dB                           | JUDGUNIT_SPU<br>DB          | JUDGUNIT_                                                | DB                  |                                                      |
| Spot | Unit      | xW/MHz                       | JUDGUNIT_SPU<br>W_MHZ       | SPU?                                                     | W_MHZ               |                                                      |
|      |           | Absolute                     | JUDGUNIT_SPTBL<br>ABS       |                                                          | ABS                 |                                                      |
|      |           | Absolute                     | JUDGUNIT_SPTBL<br>ON        |                                                          | ADS                 |                                                      |
|      | Judgement | Relative                     | JUDGUNIT_SPTBL<br>REL       | JUDGUNIT_<br>SPTBL?                                      | REL                 |                                                      |
|      |           | nelative                     | JUDGUNIT_SPTBL<br>OFF       |                                                          | KEL                 |                                                      |
|      |           | Relative&<br>Absolute        | JUDGUNIT_SPTBL<br>RELABS    |                                                          | RELABS              |                                                      |
|      |           | Absolute<br>(xW, xW/<br>MHz) | MRGN_SPU<br>SPOT,ABS_W,1    | MRGN_SPU?<br>SPOT,ABS_W 1<br>MRGN_SPU?<br>SPOT,ABS_DBM 1 | 1                   | 1: 0.00 / 10.00                                      |
|      | Margin    | Absolute (dBm)               | MRGN_SPU<br>SPOT,ABS_DBM,1  |                                                          | 1                   | l: 0.00 to 10.00<br>dB                               |
|      |           | Relative (dBm)               | MRGN_SPU<br>SPOT,REL, l     | MRGN_SPU?<br>SPOT,REL                                    | 1                   |                                                      |

| Fun            | Function                 |           | Program Message            | Query<br>Message              | Response<br>Message | Remarks                                                             |
|----------------|--------------------------|-----------|----------------------------|-------------------------------|---------------------|---------------------------------------------------------------------|
|                | Start                    | Start     | TBLFREQ_SPU<br>START,Fn,f  | TBLFREQ_<br>SPU?<br>START,Fn  | f                   | f: 9 kHz to<br>(upper limit<br>frequency of<br>main unit<br>-1 kHz) |
|                |                          | Stop      | TBLFREQ_SPU<br>STOP,Fn,f   | TBLFREQ_<br>SPU?<br>STOP,Fn   | f                   | f: 10 kHz to<br>upper limit<br>frequency of<br>main unit            |
|                | RBW (Freq                | . Search) | TBLRBW_SPU<br>SWEEP,Fn,f   | TBLRBW_<br>SPU?<br>SWEEP,Fn   | f                   | f: 300 Hz to 20<br>MHz                                              |
|                | RBW (Level Meas.)        |           | TBLRBWLM_SPU<br>SWEEP,Fn,f | TBLRBWLM_<br>SPU?<br>SWEEP,Fn | f                   | f: 300 Hz to 20<br>MHz                                              |
|                | RBW                      | Auto      | TBLRBWMD_SPU<br>SWEEP,AUTO | TBLRBWMD_                     | AUTO                |                                                                     |
|                | Mode                     | Manual    | TBLRBWMD_SPU<br>SWEEP,MAN  | SPU? SWEEP                    | MAN                 |                                                                     |
| Search & Sweep | RBW<br>Type              | Normal    | TBLRBWTP_SPU<br>SWEEP,NRM  | TBLRBWTP_                     | NRM                 |                                                                     |
|                |                          | Digital   | TBLRBWTP_SPU<br>SWEEP,DGTL | SPU? SWEEP                    | DGTL                |                                                                     |
|                | VBW (Freq. Search)       |           | TBLVBW_SPU<br>SWEEP,Fn,f   | TBLVBW_<br>SPU?<br>SWEEP,Fn   | f                   | f: 0 Hz to 3<br>MHz                                                 |
|                | VBW (Level Meas.)        |           | TBLVBWLM_SPU<br>SWEEP,Fn,f | TBLVBWLM_<br>SPU?<br>SWEEP,Fn | f                   | f: 0 Hz to 3<br>MHz                                                 |
|                | VBW                      | Auto      | TBLVBWMD_SPU<br>SWEEP,AUTO | TBLVBWMD_                     | AUTO                |                                                                     |
|                | Mode                     | Manual    | TBLVBWMD_SPU<br>SWEEP,MAN  | SPU? SWEEP                    | MAN                 |                                                                     |
|                | VBW/RBW Ratio            |           | TBLVBWRT_SPU<br>SWEEP,r    | TBLVBWRT_<br>SPU? SWEEP       | r                   | r: 0.0001 to 100                                                    |
|                | Sweep Tim<br>(Freq. Sear |           | TBLSWT_SPU<br>SWEEP,Fn,t   | TBLSWT_SPU?<br>SWEEP,Fn       | t                   | t: 10 ms to 1000 s                                                  |
|                | Sweep Tim<br>(Level Mea  |           | TBLSWTLM_SPU<br>SWEEP,Fn,t | TBLSWTLM_<br>SPU?<br>SWEEP,Fn | t                   | t: 10 ms to 1000 s                                                  |

| Fun               | ction                | Item                           | Program Message             | Query Message           | Response<br>Message | Remarks                                                                          |
|-------------------|----------------------|--------------------------------|-----------------------------|-------------------------|---------------------|----------------------------------------------------------------------------------|
|                   | Sweep I              | Auto                           | TBLSWTMD_SPU<br>SWEEP,AUTO  | TBLSWTMD_S              | AUTO                |                                                                                  |
|                   | Mode                 | Manual                         | TBLSWTMD_SPU<br>SWEEP,MAN   | PU? SWEEP               | MAN                 |                                                                                  |
|                   | Ref Level            |                                | TBLRL_SPU<br>SWEEP,Fn,l     | TBLRL_SPU?<br>SWEEP,Fn  | 1                   | l: -120 to +40 dBm<br>(Pre ampl: Off)<br>-140 to +20 dBm<br>(Pre ampl: On)       |
|                   | Attenuator           |                                | TBLATT_SPU<br>SWEEP,Fn,l    | TBLATT_SPU?<br>SWEEP,Fn | 1                   | 1: 0 to 70 dB<br>(MS2687A/MS2687B)<br>0 to 62 dB (other<br>than above)           |
|                   | ATT &                | el Level SWEEP,AUTO TBLATTRLMD | AUTO                        |                         |                     |                                                                                  |
|                   | Mode                 | Manual                         | TBLATTRLMD_SPU<br>SWEEP,MAN | _SPU? SWEEP             | MAN                 |                                                                                  |
|                   | Attenuator           | Auto                           | TBLATTMD_SPU<br>SWEEP,AUTO  | TBLATTMD_               | AUTO                |                                                                                  |
|                   | Mode                 | Manual                         | TBLATTMD_SPU<br>SWEEP,MAN   | SPU? SWEEP              | MAN                 |                                                                                  |
|                   |                      | Positive<br>Peak               | DET_SPU SEARCH,<br>POS      | DET_SPU?                | POS                 |                                                                                  |
| Search &<br>Sweep |                      | Sample                         | DET_SPU SEARCH,<br>SMP      |                         | SMP                 |                                                                                  |
|                   | Detection            | Negative                       | DET_SPU SEARCH,<br>NEG      |                         | NEG                 |                                                                                  |
|                   | (Search)             | Average                        | DET_SPU SEARCH,<br>AVG      | SEARCH                  | AVG                 |                                                                                  |
|                   |                      | RMS                            | DET_SPU SEARCH,<br>RMS      |                         | RMS                 | Valid only when the<br>Option04 is<br>installed while<br>RBW Mode is<br>Digital. |
|                   |                      | Positive<br>Peak               | DET_SPU SWEEP,<br>POS       |                         | POS                 |                                                                                  |
|                   |                      | Sample                         | DET_SPU SWEEP,<br>SMP       |                         | SMP                 |                                                                                  |
|                   | Datastica            | Negative                       | DET_SPU SWEEP,<br>NEG       |                         | NEG                 |                                                                                  |
|                   | Detection<br>(Sweep) | Average                        | DET_SPU SWEEP,<br>AVG       | DET_SPU?<br>SWEEP       | AVG                 |                                                                                  |
|                   |                      | RMS                            | DET_SPU SWEEP,<br>RMS       |                         | RMS                 | Valid only when the<br>Option04 is<br>installed while<br>RBW Mode is<br>Digital. |

| Fun      | ction          | Item                        | Program Message                 | Query Message                  | Respons<br>e<br>Message | Remarks                                              |
|----------|----------------|-----------------------------|---------------------------------|--------------------------------|-------------------------|------------------------------------------------------|
|          | Limit          | Absolute                    | SPULMT<br>SWEEP,Fn,l,ABS,u      | SPULMT?<br>SWEEP,Fn,<br>ABS,u  | 1                       | l: -100 to +100<br>dBm<br>0.001 to 999.999<br>xW/MHz |
|          |                | Relative                    | SPULMT<br>SWEEP,Fn,l,REL,D<br>B | SPULMT?<br>SWEEP,<br>Fn,REL,DB | 1                       |                                                      |
|          |                | RBW, VBW,<br>SWT            | TBLVIEW_SPU<br>SWEEP,BWSWT      |                                | BWSWT                   |                                                      |
|          |                | Ref_Level,<br>Att           | TBLVIEW_SPU<br>SWEEP,REFATT     | TBLVIEW_<br>SPU? SWEEP         | REFATT                  |                                                      |
|          | View<br>Select | Limit (dB)                  | TBLVIEW_SPU<br>SWEEP,LMTDB      |                                | LMTDB                   |                                                      |
|          |                | Limit (xW)                  | TBLVIEW_SPU<br>SWEEP,LMTW       |                                | LMTW                    |                                                      |
|          |                | RBW, VBW,<br>SWT            | TBLVIEW_SPU<br>SWEEP,BWSWTLM    |                                | BWSWTL<br>M             |                                                      |
| Search & | Judgement      | dB                          | JUDGUNIT_SWU<br>DB              | JUDGUNIT_                      | DB                      |                                                      |
| Sweep    | Unit           | xW/MHz                      | JUDGUNIT_<br>SWU W_MHZ          | SWU?                           | W_MHZ                   |                                                      |
|          |                | xW/MHz                      | JUDGUNIT_<br>SWTBL s            |                                | s                       |                                                      |
|          | Judgement      | Absolute                    | JUDGUNIT_<br>SWTBL ABS          | JUDGUNIT_                      | ABS                     |                                                      |
|          | Juagement      | Relative                    | JUDGUNIT_<br>SWTBL REL          | SWTBL?                         | REL                     |                                                      |
|          |                | Relative &<br>Absolute      | JUDGUNIT_<br>SWTBL RELABS       |                                | RELABS                  |                                                      |
| 1        |                | Absolute<br>(xW,<br>xW/MHz) | MRGN_SPU<br>SWEEP,ABS_W,1       | MRGN_SPU?<br>SWEEP,ABS_W       | 1                       |                                                      |
|          | Margin         | Absolute (dBm)              | MRGN_SPU<br>SWEEP,ABS_DBM,<br>1 | MRGN_SPU?<br>SWEEP,<br>ABS_DBM | 1                       | l: 0.00 to 10.00 dB                                  |
|          |                | Relative (dBm)              | MRGN_SPU<br>SWEEP,REL,1         | MRGN_SPU?<br>SWEEP,REL         | 1                       |                                                      |
|          | Standard       |                             | TBLSTD_SPU n                    |                                |                         | n: 1 to 13, 98, 99                                   |

| Function           | Item                   | Program Message | Query<br>Message                           | Response<br>Message                                                                                                           | Remarks                                                                                       |
|--------------------|------------------------|-----------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
|                    | Frequency              |                 | SPUFREQ? a,n                               | f(a),f(a+1),,<br>f(a+n-1)                                                                                                     | a: F1 to F15<br>n: 1 to 15                                                                    |
|                    |                        |                 | SPULVL? a,n                                | l(a),l(a+1),,<br>l(a+n-1)                                                                                                     | a: F1 to F15<br>n: 1 to 15                                                                    |
|                    | Level                  | Level           | SPULVL?<br>a,n,u                           | l(a),l(a+1),,<br>l(a+n-1)                                                                                                     | a: F1 to F15<br>n: 1 to 15<br>u: DB,DBM,W,<br>W_MHz                                           |
|                    | Frequency<br>and Level |                 | SPUFREQLVL?<br>a,n<br>SPUFREQLVL?<br>a,n,u | f(a),l(a),,<br>f(a+n-1),<br>l(a+n-1)                                                                                          | a: F1 to F15<br>n: 1 to 15<br>u: DB,DBM,W,<br>W_MHz                                           |
|                    |                        |                 | SPUPASS? a                                 | jn                                                                                                                            |                                                                                               |
| Spurious Emissions | Judgement              |                 | SPUPASS?<br>ALL                            | j1,j2,,j15                                                                                                                    |                                                                                               |
|                    | Total<br>Judgement     |                 | SPUJDG?                                    | j                                                                                                                             |                                                                                               |
|                    | All                    |                 | SPUALL?<br>a,n,u                           | f(a),l(a),r(a),<br>v(a),t(a),rl(a),<br>at(a),,<br>f(a+n-1),<br>l(a+n-1),<br>v(a+n-1),<br>t(a+n-1),<br>rl(a+n-1),<br>at(a+n-1) | a: F1 to F15<br>n: 1 to 15<br>u: DB,DBM,W,<br>W_MHz                                           |
| Marker             | Marker<br>Position     | MKP_SPU n       | MKP_SPU?                                   | n                                                                                                                             | n: 0 to 500<br>(501)<br>0 to 1000 (1001)                                                      |
|                    |                        |                 | MKL_SPU? a                                 | 1                                                                                                                             | a: F1 to F15                                                                                  |
| Marker Level       | Spectrum               |                 | MKL_SPU? a,u                               | 1                                                                                                                             | a: F1 to F15<br>u: DB,DBM,W,<br>W_MHz                                                         |
| W. D.              | Time<br>Domain         |                 | SPECT_SPUT? a,b,n                          | l(b),l(b+1),,<br>l(b+n-1)                                                                                                     | a: F1 to F15<br>b: 0 to 500 (501)<br>0 to 1000 (1001)<br>n: 1 to 501 (501)<br>1 to 1001(1001) |
| Wave Data          | Frequency<br>Domain    |                 | SPECT_SPUF? a,b,n                          | l(b),l(b+1),,<br>l(b+n-1)                                                                                                     | a: F1 to F15<br>b: 0 to 500 (501)<br>0 to 1000 (1001)<br>n: 1 to 501 (501)<br>1 to 1001(1001) |

## 6.10 CCDF

The list below shows the correspondence between the external commands and the setting items on the CCDF screen.

| Function            | Item                | Program Message      | Query Message  | Response<br>Message | Remarks                                                        |
|---------------------|---------------------|----------------------|----------------|---------------------|----------------------------------------------------------------|
| Measure             | CCDF                | DSPL CCDF,CCDF       | DSPL?          | CCDF,CCDF           |                                                                |
| Method              | APD                 | DSPL CCDF,APD        | DSPL?          | CCDF,APD            |                                                                |
|                     | Positive            | TRFORM_CCDF POS      | TRFORM_CCDF?   | POS                 |                                                                |
| Trace               | Negative            | TRFORM_CCDF NEG      | TRFORM_CCDF?   | NEG                 |                                                                |
| Format              | Positive & Negative | TRFORM_CCDF POSNEG   | TRFORM_CCDF?   | POSNEG              |                                                                |
|                     | 2 dB                | HSCALE_CCDF 2        | HSCALE_CCDF?   | 2                   |                                                                |
|                     | 5 dB                | HSCALE_CCDF 5        | HSCALE_CCDF?   | 5                   |                                                                |
| Horizontal<br>Scale | 10 dB               | HSCALE_CCDF 10       | HSCALE_CCDF?   | 10                  |                                                                |
| Scale               | 20 dB               | HSCALE_CCDF 20       | HSCALE_CCDF?   | 20                  |                                                                |
|                     | 50 dB               | HSCALE_CCDF 50       | HSCALE_CCDF?   | 50                  |                                                                |
| Display             | Probability         | DISPTYPE_CCDF PROB   | DISPTYPE_CCDF? | PROB                |                                                                |
| Data Type           | Distribution        | DISPTYPE_CCDF DSTRBT | DISPTYPE_CCDF? | DSTRBT              |                                                                |
|                     | Off                 | REFTR_CCDF OFF       | REFTR_CCDF?    | OFF                 |                                                                |
| D C                 | Save                | REFTR_CCDF SAVE      | REFTR_CCDF?    | SAVE                |                                                                |
| Reference<br>Trace  | Gaussian            | REFTR_CCDF GAUSS     | REFTR_CCDF?    | GAUSS               |                                                                |
| Trace               | Save &<br>Gaussian  | REFTR_CCDF SAVEGAUSS | REFTR_CCDF?    | SAVEGAUSS           |                                                                |
| Save Trace          | 1                   | SAVETR_CCDF          | SAVETR_CCDF?   | s                   |                                                                |
|                     | 22 MHz              | RBW_CCDF 22MHZ       | RBW_CCDF?      | 22MHZ               |                                                                |
|                     | 20 MHz              | RBW_CCDF 20MHZ       | RBW_CCDF?      | 20MHZ               |                                                                |
|                     | 10 MHz              | RBW_CCDF 10MHZ       | RBW_CCDF?      | 10MHZ               |                                                                |
|                     | 5 MHz               | RBW_CCDF 5MHZ        | RBW_CCDF?      | 5MHZ                |                                                                |
| Filter Type         | 3 MHz               | RBW_CCDF 3MHZ        | RBW_CCDF?      | 3MHZ                |                                                                |
|                     | 3.84 MHz<br>(RRC)   | RBW_CCDF RRC         | RBW_CCDF?      | RRC                 |                                                                |
|                     | 3.84 MHz<br>(RC)    | RBW_CCDF RC          | RBW_ CCDF?     | RC                  |                                                                |
| Data Count          |                     | DCOUNT_CCDF n        | DCOUNT_CCDF?   | n                   | n:<br>10000 to<br>2000000000                                   |
| Analysis Length     |                     | ANLYLEN_CCDF t       | ANLYLEN_CCDF?  | t                   | t:1 to 100000                                                  |
| Adjust Rang         | e                   | ADJRNG               | _              | _                   |                                                                |
| Marker              | Normal              | MKR_CCDF NRM         | MKR_CCDF?      | NRM                 |                                                                |
| Mode                | Off                 | MKR_CCDF OFF         | MKR_CCDF?      | OFF                 |                                                                |
| Marker Position     |                     | MKP_CCDF n           | MKP_CCDF?      | n                   | n: 0.0001 to 100<br>(Probability)<br>0 to 50<br>(Distribution) |

### CCDF (continued.)

| Function                | Item    | Program Message | Query Message           | Response<br>Message | Remarks                                                                                   |
|-------------------------|---------|-----------------|-------------------------|---------------------|-------------------------------------------------------------------------------------------|
| Power                   |         | _               | POWER_CCDF?             | la,lb,lc,ld,le      |                                                                                           |
| Power at x %            |         | _               | PROBPWR_CCDF?           | la,lb,lc,ld,le,lf   |                                                                                           |
| Distribution a          | at grid | _               | PWRPROB_CCDF?           | la,lb,lc,ld,le      |                                                                                           |
|                         |         | _               | MKL_CCDF? n,<br>PROB    | la                  | n: 0,1                                                                                    |
| М. 1                    |         | _               | MKL_CCDF? n,<br>DSTRBT  | lb                  | n: 0,1                                                                                    |
| Marker                  |         | _               | MKL_CCDF?<br>ALL,PROB   |                     |                                                                                           |
|                         |         | _               | MKL_CCDF?<br>ALL,DSTRBT |                     |                                                                                           |
| Dalta Marker            | r       | _               | DELTAMKR_CCDF?          | 1                   |                                                                                           |
| Dalta Marker  Wave Data |         | _               | CCDFDSTRBT?<br>la,lb,lc | ld                  | la: -50.0 to +50.0 (APD) 0.0 to 50.0 (CCDF) lb: 1 to 1001 (APD) 1 to 501 (CCDF) lc: 0,1,2 |

# 6.11 Symbol Rate Error

The list below shows the correspondence between the external commands and the setting items on the Symbol Rate Error screen.

| Function        | Item    | Program Message    | Query Message  | Response<br>Message | Remarks              |
|-----------------|---------|--------------------|----------------|---------------------|----------------------|
| Analysis Length |         | ANLYLEN_SRERR n    | ANLYLEN_SRERR? | n                   | *2<br>n: 250 to 1000 |
| Stone as Made   | Normal  | STRG_SRERR NRM     | STRG_SRERR?    | NRM                 | *2                   |
| Storage Mode    | Average | STRG_SRERR AVG     | STRG_SRERR?    | AVG                 | *2                   |
| Average Count   |         | AVR_SRERR n        | AVR_SRERR?     | n                   | *2<br>n: 2 to 999    |
| T . 1           | Every   | INTVAL_SRERR EVERY | INTVAL_SRERR?  | EVERY               | *2                   |
|                 | Once    | INTVAL_SRERR ONCE  | INTVAL_SRERR?  | ONCE                | *2                   |

### Symbol Rate Error (continued.)

| Function          | Item                                                       | Program Message | Query Message                | Response<br>Message         | Remarks                                                                                                                                                                                                           |
|-------------------|------------------------------------------------------------|-----------------|------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Level<br>Calibration                                       | LVLCAL          |                              |                             |                                                                                                                                                                                                                   |
|                   | Pre-selector<br>Tuning                                     | PSLTUNE         |                              |                             |                                                                                                                                                                                                                   |
|                   | Level<br>Calibration<br>using PM                           | PWRCAL          | PWRCAL?                      | 1                           | 1: -10.00 to +10.00                                                                                                                                                                                               |
| Calibration       | Level<br>Calibration                                       |                 | CALSTAT? LVL                 | n1,n2,n3,n4,<br>n5,n6,n7    | n1: 0: Normal termination 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time                                                                                      |
|                   | Pre-selector<br>Tuning<br>Level<br>Calibration<br>using PM |                 | CALSTAT? PSL<br>CALSTAT? PWR | n1,n2,n3,n4,<br>n5,n6,n7,n8 | n1: 0: Normal termination 1: Input limit 4: Abnormal signal 7: No input signal 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time n8: Calibration frequency [MHz] |
| Calibration Value |                                                            | CALVAL 1        | CALVAL?                      | n,l                         | n: mode (0: Not calibrated, 1: Internal Calibration, 2: External writing 1: -10.00 to 10.00)                                                                                                                      |
| Adjust Range      |                                                            | ADJRNG          |                              |                             |                                                                                                                                                                                                                   |
| Measure<br>Result | Symbol Rate<br>Error                                       |                 | SRERR?                       | 1                           | *2<br>1: -60.0 to +60.0                                                                                                                                                                                           |

<sup>\*1:</sup> IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)

 $<sup>\</sup>pm 2$ : IEEE802.11a, IEEE802.11g (ERP-OFDM), IEEE802.11g (DSSS-OFDM)

# **6.12 Chip Clock Error**

The list below shows the correspondence between the external commands and the setting items on the Chip Clock Error screen.

| Function            | Item    | Program Message       | Query Message  | Response<br>Message | Remarks                 |
|---------------------|---------|-----------------------|----------------|---------------------|-------------------------|
| Analysis Lengt      | th      | ANLYLEN_CCERR n       | ANLYLEN_CCERR? | n                   | *1                      |
|                     | Normal  | STRG CCERR NRM        | STRG_CCERR?    | NRM                 | n: 11000 to 44000<br>*1 |
| Storage Mode        | Average | STRG_CCERR AVG        | STRG_CCERR?    | AVG                 | *1                      |
| Average Count       |         | AVR_CCERR n           | AVR_CCERR?     | n                   | *1<br>n: 2 to 999       |
| Refresh<br>Interval | Every   | INTVAL_CCERR<br>EVERY | INTVAL_CCERR?  | EVERY               | *1                      |
|                     | Once    | INTVAL_CCERR ONCE     | INTVAL_CCERR?  | ONCE                | *1                      |

### Chip Clock Error (continued.)

| Function          | Item                             | Program Message | Query Message | Response<br>Message         | Remarks                                                                                                                                                                                                           |
|-------------------|----------------------------------|-----------------|---------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | Level<br>Calibration             | LVLCAL          |               |                             |                                                                                                                                                                                                                   |
|                   | Level<br>Calibration<br>using PM | PWRCAL          | PWRCAL?       | 1                           | l: -10.00 to +10.00                                                                                                                                                                                               |
| Calibration       | Level<br>Calibration             |                 | CALSTAT? LVL  | n1,n2,n3,n4,<br>n5,n6,n7    | n1: 0: Normal termination 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time                                                                                      |
|                   | Level<br>Calibration<br>using PM |                 | CALSTAT? PWR  | n1,n2,n3,n4,<br>n5,n6,n7,n8 | n1: 0: Normal termination 1: Input limit 4: Abnormal signal 7: No input signal 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time n8: Calibration frequency [MHz] |
| Calibration Value |                                  | CALVAL 1        | CALVAL?       | n,l                         | n: mode (0: Not calibrated, 1: Internal Calibration, 2: External writing 1: -10.00 to 10.00)                                                                                                                      |
| Adjust Range      |                                  | ADJRNG          |               |                             |                                                                                                                                                                                                                   |
| Measure<br>Result | Chip Clock<br>Frequency<br>Error |                 | CCERR?        | 1                           | *1<br>1: -60.0 to +60.0                                                                                                                                                                                           |

<sup>\*1:</sup> IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)

 $<sup>\</sup>star 2$ : IEEE802.11a, IEEE802.11g (ERP-OFDM), IEEE802.11g (DSSS-OFDM)

# 6.13 IQ Level

The list below shows the correspondence between the external commands and the setting items on the IQ Level screen.

| Function          | Ite                     | em      | Program Message     | Query Message | Response<br>Message | Remarks                                               |
|-------------------|-------------------------|---------|---------------------|---------------|---------------------|-------------------------------------------------------|
| Storage           | Normal                  |         | STRG_IQL NRM        | STRG_IQL?     | NRM                 |                                                       |
| Mode              | Average                 |         | STRG_IQL AVG        | STRG_IQL?     | AVG                 |                                                       |
| Average cou       | nt                      |         | AVR_IQL n           | AVR_IQL?      | n                   | n: 2 to 999                                           |
| Refresh           | Every                   |         | INTVAL_IQL<br>EVERY | INTVAL_IQL?   | EVERY               |                                                       |
| Interval          | Once                    |         | INTVAL_IQL<br>ONCE  | INTVAL_IQL?   | ONCE                |                                                       |
| Unit              | mV                      |         | UNIT_IQL MV         | UNIT_IQL?     | MV                  |                                                       |
| Ullit             | dBmV                    |         | UNIT_IQL DBMV       | UNIT_IQL?     | DBMV                |                                                       |
|                   |                         |         |                     | IQLVL?        | la,lb,lc,ld         | la: I Level(rms) lb: Q Level(rms) lc: I p-p ld: Q p-p |
|                   | ,                       | All     |                     | IQLVL? MV     | la,lb,lc,ld         | la: I Level(rms) lb: Q Level(rms) lc: I p-p ld: Q p-p |
| Measure<br>Result | Level                   |         |                     | IQLVL? DBMV   | la,lb,lc,ld         | la: I Level(rms) lb: Q Level(rms) lc: I p-p ld: Q p-p |
| TC5u10            |                         |         |                     | ILVL?         | 1                   |                                                       |
|                   |                         | I (rms) |                     | ILVL? MV      | 1                   |                                                       |
|                   |                         |         |                     | ILVL? DBMV    | 1                   |                                                       |
|                   |                         |         |                     | QLVL?         | 1                   |                                                       |
|                   |                         | Q (rms) |                     | QLVL? MV      | 1                   |                                                       |
|                   |                         |         |                     | QLVL? DBMV    | 1                   |                                                       |
|                   |                         |         |                     | IPPLVL?       |                     |                                                       |
|                   |                         | I p-p   |                     | IPPLVL? MV    |                     |                                                       |
|                   |                         |         |                     | IPPLVL? DBMV  |                     |                                                       |
|                   |                         |         |                     | QPPLVL?       |                     |                                                       |
|                   |                         | Q p-p   |                     | QPPLVL? MV    |                     |                                                       |
|                   |                         |         |                     | QPPLVL? DBMV  |                     |                                                       |
|                   | I/Q Phase<br>difference |         |                     | IQPHASE?      | r                   | unit: deg                                             |

## **6.14 Power Meter**

The list below shows the correspondence between the external commands and the setting items on the Power Meter screen.

| Function          | Item  | Program Message | Query Message | Response<br>Message | Remarks |
|-------------------|-------|-----------------|---------------|---------------------|---------|
| Zero Set          | •     | ZEROSET         |               |                     |         |
| Zero Set          |       | ZAJ             |               |                     |         |
| Range Up          |       | RNG UP          |               |                     |         |
| Range Down        | 1     | RNG DN          |               |                     |         |
| Adjust Rang       | re    | ADJRNG          |               |                     |         |
| Range1            |       | RNG1            |               |                     |         |
| Range2            |       | RNG2            |               |                     |         |
| Range3            |       | RNG3            |               |                     |         |
| Range4            |       | RNG4            |               |                     |         |
| Range5            |       | RNG5            |               |                     |         |
| Set Relative      |       | SETREL          |               |                     |         |
| Measure<br>Result |       |                 | POWER? DBM    | 1                   |         |
|                   | Power |                 | POWER? WATT   | 1                   |         |
|                   |       |                 | POWER? DB     | 1                   |         |

## 6.15 Batch Measurement

The list below shows the correspondence between the external commands and the setting items on the Batch Measurement screen.

| Function              | Item                                            | Program Message | Query Message                | Response<br>Message         | Remarks                                                                                                                                                                                                           |
|-----------------------|-------------------------------------------------|-----------------|------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adjust Range          |                                                 | ADJRNG?         |                              |                             |                                                                                                                                                                                                                   |
|                       | Level<br>Calibration                            | LVLCAL          |                              |                             |                                                                                                                                                                                                                   |
| Calibration           | Pre-selector<br>Tuning                          | PSLTUNE         |                              |                             |                                                                                                                                                                                                                   |
|                       | Level<br>Calibration<br>using PM                | PWRCAL          | PWRCAL?                      | 1                           | l:<br>-10.00~10.00                                                                                                                                                                                                |
|                       | Level<br>Calibration                            |                 | CALSTAT? LVL                 | n1,n2,n3,n4,n<br>5,n6,n7    | n1: 0: Normal termination 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time                                                                                      |
| Calibration<br>Status | Level Calibration using PM, Pre-selector Tuning |                 | CALSTAT? PSL<br>CALSTAT? PWR | n1,n2,n3,n4,n<br>5,n6,n7,n8 | n1: 0: Normal termination 1: Input limit 4: Abnormal signal 7: No input signal 8: Calibration failure 9: Not calibrated n2, n3, n4: Calibration date n5, n6, n7: Calibration time n8: Calibration frequency [MHz] |
| Calibration Value     |                                                 | CALVAL 1        | CALVAL?                      | n,l                         | n: mode (0: Not calibrated, 1: Internal Calibration, 2: External writing 1: -10.00 to 10.00)                                                                                                                      |

#### Batch Measurement (continued.)

| Batch Measureme |                                      | Drogram Magaza  | Overy Message    | Response | Domonko |
|-----------------|--------------------------------------|-----------------|------------------|----------|---------|
| Function        | Item                                 | Program Message | Query Message    | Message  | Remarks |
| Start/Stop      | Start                                | START_BCH       | START_BCH?       | n        |         |
| Start/Stop      | Stop                                 | STOP_BCH        | STOP_BCH?        | n        |         |
|                 | Normal                               | MODE_BCH, NRM   |                  | NRM      |         |
|                 | Abort with failure                   | MODE_BCH, FAIL  |                  | FAIL     |         |
| Measure Mode    | Abort with abnormal state            | MODE_BCH, ABN   | MODE_BCH?        | ABN      |         |
|                 | Abort with failure or abnormal state | MODE_BCH, ABRT  |                  | ABRT     |         |
|                 | Modulation<br>Analysis               |                 | JUDGE_BCH? MOD   | a        |         |
|                 | RF Power                             |                 | JUDGE_BCH? PWR   | a        |         |
|                 | OBW                                  |                 | JUDGE_BCH? OBW   | a        |         |
|                 | Adjust<br>Channel<br>Power           |                 | JUDGE_BCH? ACP   | a        |         |
| Pass/Fail       | Spectrum<br>Mask                     |                 | JUDGE_BCH? MSK   | a        |         |
|                 | Spurious<br>Emission 1               |                 | JUDGE_BCH? SPR 1 | a        |         |
|                 | Spurious<br>Emission 2               |                 | JUDGE_BCH? SPR 2 | a        |         |
|                 | Total Result                         |                 | JUDGE_BCH? TTL   | a        |         |
|                 | Select Items                         |                 | JUDGE_BCH? n     | a1,am    |         |
| Setup Table     | Parameter                            | SETTBL_BCH, PAR | SETTBL_BCH?      | PAR      |         |
| Detup Table     | Limit                                | SETTBL_BCH, LMT | SETTBE_BOIT:     | LMT      |         |
|                 | Modulation<br>Analysis               | MEAS_BCH MOD, a | MEAS_BCH?, MOD   | a        |         |
|                 | RF Power                             | MEAS_BCH PWR, a | MEAS_BCH?, PWR   | a        |         |
|                 | OBW                                  | MEAS_BCH OBW, a | MEAS_BCH?, OBW   | a        |         |
| On/Off          | Adjacent<br>Channel Power            | MEAS_BCH ACP, a | MEAS_BCH?, ACP   | a        |         |
|                 | Spectrum<br>Mask                     | MEAS_BCH MSK, a | MEAS_BCH?, MSK   | a        |         |
|                 | Spurious<br>Emission                 | MEAS_BCH SPR, a | MEAS_BCH?, SPR   | a        |         |
|                 | Flatness                             | MEAS_BCH FLT, a | MEAS_BCH?, FLT   | a        |         |

#### Batch Measurement (continued.)

| Function      | Item                      | Program Message          | Query Message           | Response | Remarks |
|---------------|---------------------------|--------------------------|-------------------------|----------|---------|
|               |                           |                          |                         | Message  |         |
|               | Modulation<br>Analysis    | MEAS_BCH MOD, n          | CNT_BCH?, MOD           | n        |         |
|               | RF Power                  | CNT_BCH PWR, n           | CNT_BCH?, PWR           | n        |         |
| Measure Count | OBW                       | CNT_BCH OBW, n           | CNT_BCH?, OBW           | n        |         |
| Measure Count | Adjacent<br>Channel Power | CNT_BCH ACP, n           | CNT_BCH?, ACP           | n        |         |
|               | Spectrum<br>Mask          | CNT_BCH MSK, n           | CNT_BCH?, MSK           | n        |         |
| Parameter     | Set parameter to default  | DEFLTPAR_BCH             |                         |          |         |
|               | Spurious Table            | SPRTBL_BCH tbl,n         | SPRTBL_BCH? tbl         | n        |         |
|               | Frequency<br>Error        | LMTFRERR_BCH b,a         | LMTFRERR_BCH?<br>b      | a        |         |
|               | EVM                       | LMTEVM_BCH RMS b,a       | LMTEVM_BCH? b           | a,       |         |
|               | Phase Error               | LMTPHERR_BCH p           | LMTPHERR_BCH?           | p        |         |
|               | Magnitude<br>Error        | LMTMGERR_BCH a           | LMTMGERR_BCH?           | a        |         |
|               | Origin Offset             | LMTORG_BCH a             | LMTORG_BCH?             | a        |         |
| T TT 1        | Carrier Leak              | LMTLEAK_BCH a            | LMTLEAK_BCH?            | a        |         |
| Limit Value   | Flatness                  | LMTFLT_BCH b,a           | LMTFLT_BCH? b           | a        |         |
|               | TX Power                  | LMTPWR_BCH b,a           | LMTPWR_BCH? b           | a        |         |
|               | Carrier Off<br>Power      | LMTOFPWR_BCH<br>b,a      | LMTOFPWR_BCH?           | a        |         |
|               | On/Off Ratio              | LMTRATIO_BCH a           | LMTRATIO_BCH?           | a        |         |
|               | Ramp Time                 | LMTRAMP_BCH a            | LMTRAMP_BCH?            | a        |         |
|               | OBW                       | LMTOBW_BCH b,a           | LMTOBW_BCH? b           | a        |         |
|               | Adjacent CH<br>Power      | LMTACP_BCH b,a           | LMTACP_BCH? b           | a        |         |
| View Select   |                           | VIEW_BCH a               | VIEW_BCH?               | a        |         |
|               | Select Mask<br>Template   | SLCTTEMP_SMASK_<br>BCH a | SLCTTEMP_<br>SMASK_BCH? | a        |         |
| Calad M. 11   |                           | TBLSTD_SMASK_<br>BCH a   | TBLSTD_SMASK_<br>BCH?   | a        |         |
| Select Table  | Select<br>Standard        | TBLSTD_OBW_<br>BCH a     | TBLSTD_OBW_<br>BCH?     | a        |         |
|               |                           | TBLSTD_ADJ_BCH a         | TBLSTD_ADJ_<br>BCH?     | a        |         |
| Save          | Save Result to<br>MemCard | SAVE2MCARD               |                         |          |         |

#### Section 6 Command List

### Batch Measurement (continued.)

| Function | Item                | Program Message | Query Message      | Response<br>Message                  | Remarks                                                                |
|----------|---------------------|-----------------|--------------------|--------------------------------------|------------------------------------------------------------------------|
|          | Frequency           |                 | SPUFREQ_BCH?a,b,n  | f(b),f(b+1),,<br>f(b+n-1)            | a: SPR1, SPR2<br>b: F1 to F15<br>n: 1 to 15                            |
|          | Level               |                 | SPULVL_BCH?a,b,n,u | l(b),l(b+1),,<br>l(b+n-1)            | a: SPR1, SPR2<br>b: F1 to F15<br>n: 1 to 15<br>u: DB, DBM, W,<br>W_MHz |
| Result   | Frequency and Level |                 | ahnu               | f(b),l(b),,<br>f(b+n-1),<br>l(b+n-1) | a: SPR1, SPR2<br>b: F1 to F15<br>n: 1 to 15<br>u: DB, DBM, W,<br>W_MHz |
|          | Judgement           |                 |                    | j(b)<br>j1,j2,,j15                   | a: SPR1, SPR2<br>n: F1 to F15                                          |
|          | Total Judgement     |                 | SPUJDG_BCH?a       | j                                    | a: SPR1, SPR2                                                          |

# Section 7 Detailed Explanations of Commands

This section provides the detailed explanation of the external control commands that can be used by the MX268x30A/MX860x30A wireless LAN Measurement Software for the MS2681A/MS2683A/MS2687A/MS2687B/MS8608A/MS8609A, in alphabetical order.

Refer to "Section 6 Command List" for list of these messages.

| 7.1 | Detailed Explanation of External |      | CARRLK         | 7-45 |
|-----|----------------------------------|------|----------------|------|
|     | Control Commands in              |      | CCDFDSTRBT     | 7-46 |
|     | Alphabetical Order               | 7-5  | CCERR          | 7-48 |
|     | ADJCH                            | 7-7  | CHPWR          | 7-49 |
|     | ADJRNG                           | 7-9  | CNT_BCH        | 7-51 |
|     | ANLYLEN                          | 7-10 | CONSTVIEW      | 7-52 |
|     | ANLYLEN_CCDF                     | 7-11 | CONTS          | 7-54 |
|     | ANLYLEN_CCERR                    | 7-13 | CORR           | 7-55 |
|     | ANLYLEN_RFPWR                    | 7-14 | DATRATE        | 7-56 |
|     | ANLYLEN_SRERR                    | 7-15 | DCOUNT_CCDF    | 7-57 |
|     | ANLYSTART                        | 7-16 | DELTAMKR_CCDF  | 7-58 |
|     | ATT_ADJ                          | 7-17 | DET_ADJ        | 7-60 |
|     | ATTMD_ADJ                        | 7-18 | DET_OBW        | 7-61 |
|     | ATTMD_OBW                        | 7-19 | DET_SMASK      | 7-62 |
|     | ATTMD_SMASK                      | 7-20 | DET_SPU        | 7-63 |
|     | ATT_OBW                          | 7-21 | DFLTPAR_BCH    | 7-65 |
|     | ATTRLMD_ADJ                      | 7-22 | DISP_REFLVL    | 7-66 |
|     | ATTRLMD_OBW                      | 7-23 | DISPTYPE_CCDF  | 7-67 |
|     | ATTRLMD_SMASK                    | 7-24 | DISPTYPE_SMASK | 7-68 |
|     | ATT_SMASK                        | 7-25 | DPTS_ADJ       | 7-69 |
|     | AVR_ADJ                          | 7-26 | DPTS_OBW       | 7-70 |
|     | AVR_CCERR                        | 7-27 | DSPL           | 7-71 |
|     | AVR_IQL                          | 7-28 | ERRSC          | 7-73 |
|     | AVR_MOD                          | 7-29 | EVMSUB         | 7-74 |
|     | AVR_OBW                          | 7-30 | EVMSYM         | 7-76 |
|     | AVR_RFPWR                        | 7-31 | EVM_THRES      | 7-78 |
|     | AVR_SRERR                        | 7-32 | FILTER         | 7-79 |
|     | AVR_SMASK                        | 7-33 | FLATIN         | 7-80 |
|     | AVR_SPU                          | 7-34 | FLATMEAS       | 7-82 |
|     | BAND                             | 7-35 | FLATOUT        | 7-83 |
|     | BIN                              | 7-36 | FREQ           | 7-85 |
|     | BRST_DETLVL                      | 7-37 | FSPAN_OBW      | 7-87 |
|     | BRST_DETOFFSET                   | 7-38 | GAUSSBT        | 7-88 |
|     | BS                               | 7-39 | HSCALE_CCDF    | 7-89 |
|     | CALSTAT                          | 7-40 | ICONST         | 7-90 |
|     | CALVAL                           | 7-42 | ILVL           | 7-92 |
|     | CARRF                            | 7-43 | INI            | 7-93 |
|     | CARRFERR                         | 7-44 | INTEG_ADJ      | 7-94 |

| INTVAL ADJ                  | . 7-95  | MKN_ADJ                | 7-151   |
|-----------------------------|---------|------------------------|---------|
| INTVAL_CCERR                |         | MKN SMASK              |         |
| INTVAL IQL                  |         | MKP_ADJ                |         |
| INTVAL_IQE                  |         | MKP_CCDF               |         |
| INTVAL_MOD                  |         | MKP MOD                |         |
| INTVAL_OBW                  |         | MKP RFPWR              |         |
| INTVAL_SRERR                |         | MKP_SMASK              |         |
| INTVAL_SMASK                |         | MKP_SPU                |         |
| INTVAL_SIVIAGR              |         | MKR ADJ                |         |
| IP                          |         | MKR CCDF               |         |
| IPPLVL                      |         | MKR_MOD                |         |
| IQINZ                       |         | MKR RFPWR              |         |
| IQLVL                       |         | MKR SMASK              |         |
| IQPHASE                     |         | MKRS ADJ               |         |
| JUDGE_BCH                   |         | MKRS_SMASK             |         |
| JUDGUNIT_SPTBL              |         | MKSSYM                 |         |
| JUDGUNIT_SPU                |         | MOD_SYM                |         |
| JUDGUNIT_SWTBL              |         | MODE BCH               |         |
| JUDGUNIT_SWU                |         | MODE_BCH               |         |
| <del>-</del>                |         |                        |         |
| LMTEVM BOLL                 |         | MRGN_SPU               |         |
| LMTEUT BOW                  |         | MSTAT DOLL             |         |
| LMTFDFDD DOLL               |         | MSTAT_BCH              |         |
| LMTFRERR_BCH                |         | NUMBST                 |         |
| LMTLEAK_BCH                 |         | NUMSYM_BST             |         |
| LMTORW BCH                  |         | NUMSYM_TOTAL<br>OBW    |         |
| LMTOERWR BCH                |         | OBWFREQ                |         |
| LMTOPPOR BCH                |         | OCCBW                  |         |
| LMTORG_BCH<br>LMTPHERR_BCH  |         | OFFPWR                 |         |
| <del>-</del>                |         | ORGOFS                 |         |
| LMTPWR_BCH                  |         |                        |         |
| LMTRAMP_BCH<br>LMTRATIO BCH |         | PEAK_SMASK<br>PHASEERR |         |
| <b>–</b>                    |         |                        |         |
| LVLCAL                      |         | PHSYM                  |         |
| MAGTDERR                    |         | PHY_BURST              |         |
| MAXPWR<br>MEAS              |         | PLVL_SMASK<br>PNLMD    |         |
|                             |         | POWER                  |         |
| MEAS_BCH<br>MEASOBJ         |         | POWER_CCDF             |         |
|                             |         | <del>-</del>           |         |
| MKL_ADJ                     |         | PRE                    |         |
| MKL_CCDF                    |         | PREAMP                 |         |
| MKL_MOD                     |         | PRMBL_SRCH             |         |
| MKL_RFPWR                   |         | PROBPWR_CCDF           |         |
| MKL_SMASK                   |         | PSLTUNE                |         |
| MKL_SPU                     | . 7-149 | PVECTERR               | . 7-199 |

| DIAIDOAL                 | 7.000              | ODEOT AD JOED        | 7.050   |
|--------------------------|--------------------|----------------------|---------|
| PWRCAL                   |                    | SPECT_ADJSEP         |         |
| PWRPROB_CCDF             |                    | SPECT_OBW            |         |
| PWRTIME                  |                    | SPECT_SMASK          |         |
| QCONST                   |                    | SPECT_SPUF           |         |
| QLVL                     |                    | SPECT_SPUT           |         |
| QPPLVL                   |                    | SPFLAT               |         |
| RATIO                    |                    | SPRTBL_BCH           |         |
| RBD_ADJ                  |                    | SPUALL               |         |
| RBD_OBW                  |                    | SPUFREQ              |         |
| RBD_SMASK                |                    | SPUFREQ_BCH          |         |
| RBW_ADJ                  |                    | SPUFREQLVL           |         |
| RBW_CCDF                 |                    | SPUFREQLVL_BCH       |         |
| RBW_OBW                  | 7-215              | SPUJDG               | . 7-269 |
| RBW_SMASK                | 7-217              | SPUJDG_BCH           | . 7-270 |
| REFTR_CCDF               | 7-219              | SPULMT               | . 7-271 |
| RFINPUT                  | 7-220              | SPULVL               | . 7-273 |
| RFLVL                    | 7-221              | SPULVL_BCH           | . 7-275 |
| RFLVLOFS                 | 7-223              | SPUPASS              | . 7-277 |
| RL_ADJ                   | 7-224              | SPUPASS_BCH          | . 7-278 |
| RL_OBW                   | 7-225              | START_BCH            | . 7-279 |
| RL_SMASK                 | 7-226              | STM_ADJ              | . 7-280 |
| RMPDET                   | 7-227              | STM_OBW              | . 7-281 |
| RNG                      | 7-228              | STM_SMASK            | . 7-282 |
| RNG1                     | 7-229              | STOP_BCH             | . 7-283 |
| RNG2                     | 7-230              | STRG_ADJ             | . 7-284 |
| RNG3                     | 7-231              | STRG CCERR           | . 7-285 |
| RNG4                     | 7-232              | STRG IQL             | . 7-286 |
| RNG5                     | 7-233              | STRG_MOD             | . 7-287 |
| ROLLOFF                  | 7-234              | STRG OBW             |         |
| RSLTANALYLEN             |                    | <br>STRG_RFPWR       |         |
| RSLTMODTYPE              |                    | STRG SRERR           |         |
| S1                       |                    | STRG_SMASK           |         |
| S2                       |                    | STRG_SPU             |         |
| SAVE2MCARD               |                    | SWP                  |         |
| SAVETR_CCDF              |                    | SWT_ADJ              |         |
| SRERR                    |                    | SWT_OBW              |         |
| SETREL                   |                    | SWT_SMASK            |         |
| SETTBL_BCH               |                    | SYS                  |         |
| SLCTTEMP_SMASK           |                    | TBLATTMD_SPU         |         |
| SLCTTEMP_SMASK_BCH       |                    | TBLATTRLMD_SPU       |         |
| SMOFLT                   |                    | TBLATT_SPU           |         |
| SNGLS                    |                    | TBLFREQ_SPU          |         |
|                          |                    | TBLRBWMD_SPU         |         |
| SPAN_OBW<br>SPECT_ADJALL |                    | TBLRBW_SPUTBLRBW_SPU |         |
| OF EUT_ADJALL            | 1- <del>24</del> 8 | 1 DLNDVV_3FU         | . 1-300 |

| TBLRBWLM_SPU     | 7-308 | VBR_ADJ       | 7-362 |
|------------------|-------|---------------|-------|
| TBLRBWTP_SPU     | 7-310 | VBR_OBW       | 7-363 |
| TBLRL_SPU        | 7-311 | VBR_SMASK     | 7-364 |
| TBLSTD_ADJ       | 7-313 | VBW_ADJ       | 7-365 |
| TBLSTD_ADJ_BCH   | 7-314 | VBW_OBW       | 7-367 |
| TBLSTD_OBW       | 7-315 | VBW_SMASK     | 7-369 |
| TBLSTD_OBW_BCH   | 7-316 | VECTERR       | 7-371 |
| TBLSTD_SMASK     | 7-317 | VIEW_BCH      | 7-373 |
| TBLSTD_SMASK_BCH | 7-318 | VIEW_SPU      | 7-374 |
| TBLSTD_SPU       | 7-319 | VSCALE        | 7-375 |
| TBLSWTLM_SPU     | 7-321 | WAVEFORM_SPU  | 7-377 |
| TBLSWTMD_SPU     | 7-323 | WAVETBLNO_SPU | 7-378 |
| TBLSWT_SPU       | 7-325 | ZAJ           | 7-379 |
| TBLVBWLM_SPU     | 7-327 | ZEROSET       | 7-380 |
| TBLVBWMD_SPU     | 7-329 |               |       |
| TBLVBWRT_SPU     | 7-330 |               |       |
| TBLVBW_SPU       | 7-331 |               |       |
| TBLVIEW_SPU      | 7-333 |               |       |
| TEMPLVL_SMASK    | 7-334 |               |       |
| TEMPPASS_SMASK   | 7-336 |               |       |
| TERM             | 7-337 |               |       |
| TGTSY            | 7-338 |               |       |
| THREHOLD         | 7-339 |               |       |
| TLCSTD_ADJ       | 7-340 |               |       |
| TRANSREFPWR      | 7-341 |               |       |
| TRANSSCALE       | 7-342 |               |       |
| TRANSTIME        | 7-343 |               |       |
| TRFORM           | 7-344 |               |       |
| TRFORM_CCDF      | 7-346 |               |       |
| TRFORM_RFPWR     | 7-347 |               |       |
| TRG              | 7-348 |               |       |
| TRGDLY           | 7-349 |               |       |
| TRGEDGE          | 7-350 |               |       |
| TRGLVL           | 7-351 |               |       |
| TS               | 7-352 |               |       |
| TXPWR            | 7-353 |               |       |
| UNIT_ADJ         | 7-354 |               |       |
| UNIT_IQL         | 7-355 |               |       |
| UNIT_RFPWR       |       |               |       |
| UNIT_SMASK       |       |               |       |
| _<br>UNIT_SPU    |       |               |       |
| VBM_ADJ          |       |               |       |
| VBM_OBW          |       |               |       |
| VBM_SMASK        |       |               |       |
|                  |       |               |       |

# 7.1 Detailed Explanation of External Control Commands in Alphabetical Order

This section provides the detailed specifications of the external control commands in alphabetical order. Refer to Section 6 "Command List" to search a command for a desired function.

#### ■ Description of the detailed explanation for each command

# [1] FREQ

#### [2] **I** Function

Carrier Frequency

Sets the carrier frequency of the measured signal.

[3] ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| FREQ freq       | FREQ?         | freq             |

# [4] **■** Parameter

freq

Carrier frequency

| Range                   | Model Name  | Resolution | Initial value | Unit |
|-------------------------|-------------|------------|---------------|------|
| 100000000 to 3000000000 | MS2681A     | 1          | 2412000000    | Hz   |
| 100000000 to 6000000000 | MS2883A/87A | 1          | 5170000000    | Hz   |

#### ☐ Suffix code

None : HzHZ : Hz

KHZ, KZ : kHz MHZ, MZ : MHz GHZ, GZ : GHz

#### [5] ■ Restrictions

• The "Terminal" must be set to "RF" before hand (cf. TERM).

#### [6] Initialization command

\*RST

#### [7] ■ Use examples

Sets the carrier frequency to 1 GHz.

<Program>

TERM RF

FREQ 1GHZ

FREQ?

<Response>

[1] A command name. In this section, the command name is taken from the header of each device message.

[2] Function: The command for setting the measuring

instrument is the function of the Program Message, while the command for reading out the measured results is the function of

the Response Message.

[3] Syntax: Shows how to create a device message. A

single space character comes between the message header and parameter (shown in

italics).

[4] Parameter: Shows the meaning for the device message

argument.

The character string shown in the "Value" field is substituted for the parameter dur-

ing item setting.

Likewise, the numeric value shown in the "Range" field is substituted for the pa-

rameter during numeric setting.

"Resolution" shows a step value set for both the program message and the query message, or shows the resolution of the measured results for the response mes-

sage.

[5] Restrictions: Shows the precautions in using the com-

mand. The restrictions concern com-

mands marked "cf.".

[6] Initialization command: Shows the command that initializes the

item targeted to be set by this command.

[7] Use example: Shows the basic order for this command's

use. The value of <Response> shown in the command example that reads out the measured result is different from an ac-

tual value.

# **ADJCH**

#### **■** Function

Adjacent Channel Power

Reads out the result of Adjacent Channel Power measurement.

This command functions the same as the CHPWR command.

#### ■ Syntax

| Program Message | Query Message       | Response Message     |
|-----------------|---------------------|----------------------|
|                 | ADJCH? offset       | level                |
|                 | ADJCH? offset, unit | level                |
|                 | ADJCH? ALL          | low2, low1, up1, up2 |
|                 | ADJCH? ALL, unit    | low2, low1, up1, up2 |

#### ■ Parameter

offset

Offset frequency

| Value | Offset Frequency   |
|-------|--------------------|
| LOW2  | $-40~\mathrm{MHz}$ |
| LOW1  | $-20~\mathrm{MHz}$ |
| UP1   | 20 MHz             |
| UP2   | 40 MHz             |

#### unit

Unit

| Value | Offset Frequency   |
|-------|--------------------|
| None  | Set value for unit |
| DB    | dB                 |
| DBM   | dBm                |
| MW    | mW                 |
| UW    | uW                 |
| NW    | nW                 |

#### level

Level at the frequency specified by the offset.

| Resolution | Unit               |
|------------|--------------------|
| 0.01       | Set value for unit |

# low2

Level at -40 MHz

| Resolution | Unit               |
|------------|--------------------|
| 0.01       | Set value for unit |

#### low1

# Level at -20 MHz

| Resolution | Unit               |
|------------|--------------------|
| 0.01       | Set value for unit |

# up1

# Level at $20~\mathrm{MHz}$

| Resolution | Unit               |
|------------|--------------------|
| 0.01       | Set value for unit |

#### up2

#### Level at 40 MHz

| Resolution | Unit               |
|------------|--------------------|
| 0.01       | Set value for unit |

# ■ Use example

Reads out the level at the offset frequency 20 MHz during Adjacent Channel Power measurement.

<Program>

DSPLADJ

SWP

ADJCH? UP1,DB

<Response>

-30.34

# **ADJRNG**

#### **■** Function

Adjust Range

Executes Adjust Range.

# ■ Syntax

| Program Message | Query Message | Response Message |  |
|-----------------|---------------|------------------|--|
| ADJRNG          |               |                  |  |

#### ■ Restrictions

• This command cannot be executed when the measurement screen is Setup Common Parameter (cf. DSPL).

# ■ Example of Use

Executes Adjust Range.

<Program>

ADJRNG

# **ANLYLEN**

#### ■ Function

Analysis Length

Sets the analysis length of the modulated signal.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ANLYLEN symbol  | ANLYLEN?      | symbol           |

#### ■ Parameter

symbol

Number of analyzed symbols

| Target System                                                                          | Range       | Resolution | Initial value | Unit   |
|----------------------------------------------------------------------------------------|-------------|------------|---------------|--------|
| IEEE802.11a, HiperLAN2, HiSWANa,<br>IEEE802.11g (ERP-OFDM),<br>IEEE802.11g (DSSS-OFDM) | 1 to 1367   | 1          | 10            | symbol |
| IEEE802.11b, IEEE802.11g<br>(ERP-DSSS/CCK)                                             | 256 to 4096 | 1          | 1000          | chip   |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the analysis length to 100 symbols.

<Program>

TGTSY 11A

DSPL MODANAL

ANLYLEN 100

ANLYLEN?

<Response>

# ANLYLEN\_CCDF

#### **■** Function

Analysis Length for CCDF

Sets the analysis length to execute measurement once on the CCDF screen.

The list below shows the relationship of the analysis data number for the minimum analysis time (1  $\mu$ sec.).

| Filter (Hz)    | Analysis Data Number |  |
|----------------|----------------------|--|
| 22 MHz         | 64                   |  |
| 20 MHz         | 64                   |  |
| 10 MHz         | 32                   |  |
| 5 MHz          | 32                   |  |
| 3 MHz          | 32                   |  |
| 3.84 MHz (RC)  | 32                   |  |
| 3.84 MHz (RRC) | 32                   |  |

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ANLYLEN_CCDF a  | ANLYLEN_CCDF? | a                |

## ■ Parameter

а

Analysis length

| Range       | Resolution | Initial value | Unit |
|-------------|------------|---------------|------|
| 1 to 100000 | 1          | 500           | μsec |

#### ☐ Suffix code

None: µsec

S: sec

MS: msec

US: µsec

# ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets the analysis length to 1 msec. <Program>
DSPL CCDF,CCDF
ANLYLEN\_CCDF 1MS
ANLYLEN\_CCDF?

<Response>

# ANLYLEN\_CCERR

#### **■** Function

Analysis Length for Chip Clock Error Sets the analysis length in Chip Clock Error measurement.

# ■ Syntax

| Program Message    | Query Message  | Response Message |
|--------------------|----------------|------------------|
| ANLYLEN_CCERR chip | ANLYLEN_CCERR? | chip             |

#### ■ Parameter

chip

Analysis length

| Range          | Resolution | Initial value | Unit |
|----------------|------------|---------------|------|
| 11000 to 44000 | 1          | 11000         | chip |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the analysis length to 20000 chips in Chip Clock Error measurement.

<Program>

DSPL CCERR

ANLYLEN\_CCERR 20000

ANLYLEN\_CCERR?

<Response>

# ANLYLEN\_RFPWR

#### **■** Function

Analysis Length for RF Power

Sets analysis length of signal analysis for RF Power.

# ■ Syntax

| Program Message      | Query Message  | Response Message |
|----------------------|----------------|------------------|
| ANLYLEN_RFPWR symbol | ANLYLEN_RFPWR? | symbol           |

#### ■ Parameter

symbol

Analysis Length

| Target System                                              | Range       | Resolution | Initial Value | Unit   |
|------------------------------------------------------------|-------------|------------|---------------|--------|
| IEEE802.11a, HiperLAN2, HiSWANa,<br>IEEE802.11g (ERP-OFDM) | 1 to 1367   | 1          | 10            | symbol |
| IEEE802.11g (DSSS-OFDM)                                    | 1 to 1300   | 1          | 10            | symbol |
| IEEE802.11b,<br>IEEE802.11g (ERP-DSSS/CCK)                 | 256 to 4096 | 1          | 1000          | chip   |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets analysis length in 1000 at RF Power measurement.

<Program>

DSPL RFPWR

ANLYNLEN\_RFPWR 1000

ANLYNLEN\_RFPWR?

<Response>

# ANLYLEN\_SRERR

#### **■** Function

Analysis Length for Symbol Rate Error Sets the analysis length in Symbol Rate Error measurement.

# ■ Syntax

| Program Message      | Query Message  | Response Message |
|----------------------|----------------|------------------|
| ANLYLEN_SRERR symbol | ANLYLEN_SRERR? | symbol           |

#### ■ Parameter

symbol

Analysis length

| Range       | Resolution | Initial value | Unit   |
|-------------|------------|---------------|--------|
| 250 to 1000 | 1          | 250           | Symbol |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the analysis length to 300 symbols in Symbol Rate Error measurement.

<Program>

DSPL SRERR

ANLYLEN\_SRERR 300

ANLYLEN\_SRERR?

<Response>

# **ANLYSTART**

#### **■** Function

Analysis Start

Sets the start position which analyzes the modulated signal.

## ■ Syntax

| Program Message  | Query Message | Response Message |
|------------------|---------------|------------------|
| ANLYSTART symbol | ANLYSTART?    | symbol           |

#### ■ Parameter

symbol

Start position which analyzes

| Range                           | Resolution | Initial value | Unit   |
|---------------------------------|------------|---------------|--------|
| 1 to (1367—(Analysis Length)+1) | 1          | 1             | symbol |

#### ■ Restrictions

• When Target System is HiSWANa and Data Rate is Auto is enabled.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets the start position which analyzes to 100 symbols.

<Program>

TGTSY HISWAN

DSPL MODANAL

ANLYSTART 100

ANLYSTART?

<Response>

# ATT\_ADJ

#### **■** Function

Attenuator for Adjacent Channel Power Sets Attenuator at Adjacent Channel Power measurement

# ■ Syntax

| Program Message | Query Message | Response Message |  |
|-----------------|---------------|------------------|--|
| ATT_ADJ att     | ATT_ADJ?      | att              |  |

#### ■ Parameter

att

Attenuator

| Model name           | Range   | Initial value | Resolution | Unit |
|----------------------|---------|---------------|------------|------|
| MS2687A/MS2687B      | 0 to 70 | 20            | 10         | dB   |
| Other than the above | 0 to 62 | 18            | 2          | dB   |

☐ Suffix code

None: dB DB: dB

#### ■ Restrictions

• The range setting for Attenuator is switched corresponding to Reference Level (cf. RL\_ADJ).

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets Attenuator to 10 dB at Adjacent Channel Power measurement.

<Program>

DSPLADJ

ATT\_ADJ MAN 10

ATT\_ADJ?

<Response>

# ATTMD\_ADJ

#### ■ Function

Attenuator Mode: Manual/Auto for Adjacent Channel Power

Sets whether Attenuator for Spectrum Analyzer is set automatically or manually at Adjacent Channel Power measurement.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ATTMD_ADJ mode  | ATTMD_ADJ?    | mode             |

#### ■ Parameter

mode

Mode

| Value | Description                                        | Initial value |
|-------|----------------------------------------------------|---------------|
| AUTO  | Sets the Attenuator setting mode to automatic mode | *             |
| MAN   | Sets the Attenuator setting mode to manual mode    |               |

#### ■ Restrictions

- If Attenuator is changed when the setting mode is set to Auto, the setting is forcibly switched to Man-
- The value of Attenuator is automatically set when the setting mode is Auto.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the Attenuator setting mode to manual mode at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

ATTMD\_ADJ MAN

ATTMD ADJ?

<Response>

# ATTMD\_OBW

#### **■** Function

Attenuator Mode: Manual/Auto for Occupied Bandwidth

Sets whether Attenuator for Spectrum Analyzer is set automatically or manually at Occupied Bandwidth measurement.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ATTMD_OBW mode  | ATTMD_OBW?    | mode             |

#### ■ Parameter

mode

Mode

| Value | Description                                        | Initial value |
|-------|----------------------------------------------------|---------------|
| AUTO  | Sets the Attenuator setting mode to automatic mode | *             |
| MAN   | Sets the Attenuator setting mode to manual mode    |               |

#### ■ Restrictions

- If Attenuator is changed when the setting mode is set to Auto, the setting is forcibly switched to Man-
- The value of Attenuator is automatically set when the setting mode is Auto.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the Attenuator setting mode to manual mode at Occupied Bandwidth measurement.

<Program>

DSPL OBW

ATTMD\_OBW MAN

ATTMD\_OBW?

<Response>

# ATTMD\_SMASK

#### **■** Function

Attenuator Mode: Manual/Auto for Spectrum Mask

Sets whether Attenuator for Spectrum Analyzer is set automatically or manually at Spectrum Mask measurement.

#### ■ Syntax

| Program Message  | Query Message | Response Message |
|------------------|---------------|------------------|
| ATTMD_SMASK mode | ATTMD_SMASK?  | mode             |

#### ■ Parameter

mode

Mode

| Value | Description                                        | Initial value |
|-------|----------------------------------------------------|---------------|
| AUTO  | Sets the Attenuator setting mode to automatic mode | *             |
| MAN   | Sets the Attenuator setting mode to manual mode    |               |

#### ■ Restrictions

- If Attenuator is changed when the setting mode is set to Auto, the setting is forcibly switched to Manual.
- The value of Attenuator is automatically set when the setting mode is Auto.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the Attenuator setting mode to manual mode at Spectrum Mask measurement.

<Program>

DSPL SMASK

ATTMD\_SMASK MAN

ATTMD\_SMASK?

<Response>

# ATT\_OBW

#### **■** Function

Attenuator for Occupied Bandwidth

Sets Attenuator at Occupied Bandwidth measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ATT_OBW att     | ATT_OBW?      | att              |

#### ■ Parameter

att

Attenuator

| Model name           | Range   | Initial value | Resolution | Unit |
|----------------------|---------|---------------|------------|------|
| MS2687A/MS2687B      | 0 to 70 | 20            | 10         | dB   |
| Other than the above | 0 to 62 | 18            | 2          | dB   |

☐ Suffix code

None: dB DB: dB

#### ■ Restrictions

• The range setting for Attenuator is switched corresponding to Reference Level (cf. RL\_OBW).

#### ■ Initialization command

PRE

INI

IP

\*RST

## ■ Use example

Sets Attenuator to 10 dB at Occupied Bandwidth measurement.

<Program>

DSPL OBW

ATT OBW 10

ATT\_OBW?

<Response>

# ATTRLMD\_ADJ

#### ■ Function

Attenuator Ref Level Mode: Manual/Auto for Adjacent Channel Power Sets whether Attenuator and Ref Level for Spectrum Analyzer are set automatically or manually at Adjacent Channel Power measurement.

#### ■ Syntax

| Program Message  | Query Message | Response Message |
|------------------|---------------|------------------|
| ATTRLMD_ADJ mode | ATTRLMD_ADJ?  | mode             |

#### ■ Parameter

mode

Mode

| Value | Description                                                       | Initial value |
|-------|-------------------------------------------------------------------|---------------|
| AUTO  | Sets the Attenuator and Ref Level setting modes to automatic mode | *             |
| MAN   | Sets the Attenuator and Ref Level setting modes to manual mode    |               |

#### ■ Restrictions

- If Attenuator or Ref Level is changed when the setting mode is set to Auto, the setting is forcibly switched to Manual.
- The value of Attenuator and Ref Level are automatically set when the setting mode is Auto.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the Attenuator and Ref Level setting modes to manual mode at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

ATTRLMD ADJ MAN

ATTRLMD\_ADJ?

<Response>

# ATTRLMD\_OBW

#### ■ Function

Attenuator Ref Level Mode: Manual/Auto for Occupied Bandwidth

Sets whether Attenuator and Ref Level for Spectrum Analyzer are set automatically or manually at Occupied Bandwidth measurement.

# ■ Syntax

| Program Message  | Query Message | Response Message |
|------------------|---------------|------------------|
| ATTRLMD_OBW mode | ATTRLMD_OBW?  | mode             |

#### ■ Parameter

mode

Mode

| Value | Description                                                       | Initial value |
|-------|-------------------------------------------------------------------|---------------|
| AUTO  | Sets the Attenuator and Ref Level setting modes to automatic mode | *             |
| MAN   | Sets the Attenuator and Ref Level setting modes to manual mode    |               |

#### ■ Restrictions

- If Attenuator or Ref Level is changed when the setting mode is set to Auto, the setting is forcibly switched to Manual.
- The value of Attenuator and Ref Level are automatically set when the setting mode is Auto.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the Attenuator and Ref Level setting modes to manual mode at Occupied Bandwidth measurement.

<Program>

DSPL OBW

ATTRLMD\_OBW MAN

ATTRLMD\_OBW?

<Response>

# ATTRLMD\_SMASK

#### ■ Function

Attenuator Ref Level Mode: Manual/Auto for Spectrum Mask

Sets whether Attenuator and Ref Level for Spectrum Analyzer are set automatically or manually at Spectrum Mask measurement.

# ■ Syntax

| Program Message    | Query Message  | Response Message |
|--------------------|----------------|------------------|
| ATTRLMD_SMASK mode | ATTRLMD_SMASK? | mode             |

#### ■ Parameter

mode

Mode

| Value | Description                                                       | Initial value |
|-------|-------------------------------------------------------------------|---------------|
| AUTO  | Sets the Attenuator and Ref Level setting modes to automatic mode | *             |
| MAN   | Sets the Attenuator and Ref Level setting modes to manual mode    |               |

#### ■ Restrictions

- If Attenuator or Ref Level is changed when the setting mode is set to Auto, the setting is forcibly switched to Manual.
- The value of Attenuator and Ref Level are automatically set when the setting mode is Auto.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the Attenuator and Ref Level setting modes to manual mode at Spectrum Mask measurement.

<Program>

DSPL SMASK

ATTRLMD\_SMASK MAN

ATTRLMD\_SMASK?

<Response>

# ATT\_SMASK

#### **■** Function

Attenuator for Spectrum Mask

Sets Attenuator at Spectrum Mask measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ATT_SMASK att   | ATT_SMASK?    | att              |

#### ■ Parameter

att

Attenuator

| Model name           | Range   | Initial value | Resolution | Unit |
|----------------------|---------|---------------|------------|------|
| MS2687A/MS2687B      | 0 to 70 | 20            | 10         | dB   |
| Other than the above | 0 to 62 | 18            | 2          | dB   |

☐ Suffix code

None: dB DB: dB

#### ■ Restrictions

• The range setting for Attenuator is switched corresponding to Reference Level (cf. RL\_SMASK).

#### ■ Initialization command

PRE

INI

IP

\*RST

## ■ Use example

Sets Attenuator to 10 dB at Spectrum Mask measurement.

<Program>

DSPL SMASK

ATT\_SMASK 10

ATT\_SMASK?

<Response>

# AVR\_ADJ

#### ■ Function

Average Count for Adjacent Channel Power

Sets the average (measurement) count (number of averaging processes) when Storage Mode is set to Average at Adjacent Channel Power measurement.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AVR_ADJ count   | AVR_ADJ?      | count            |

#### ■ Parameter

count

Average count

| Range    | Resolution | Initial value |  |
|----------|------------|---------------|--|
| 2 to 999 | 1          | 2             |  |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets Average Count to 500 at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

STRG\_ADJ AVG

 $AVR\_ADJ$  500

AVR\_ADJ?

<Response>

# AVR\_CCERR

#### ■ Function

Average Count for Chip Clock Error

Sets the average (measurement) count when Storage Mode is set to Average in Chip Clock Error measurement.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AVR_CCERR count | AVR_CCERR?    | count            |

#### ■ Parameter

count

Average (measurement) count

| Range    | Resolution | Initial value |
|----------|------------|---------------|
| 2 to 999 | 1          | 2             |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets Average Count in Chip Clock Error measurement to 10.

<Program>

DSPL CCERR

STRG\_CCERR AVG

AVR\_CCERR 10

AVR\_CCERR?

<Response>

# AVR\_IQL

#### **■** Function

Average Count for IQ Level

Sets the average (measurement) count when Storage Mode is set to Average in IQ Level measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AVR_IQL count   | AVR_IQL?      | count            |

#### ■ Parameter

count

Average (measurement) count

| Range    | Resolution | Initial value |
|----------|------------|---------------|
| 2 to 999 | 1          | 2             |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets Average Count to 500.

<Program>

DSPL IQLVL

STRG\_IQL AVG

 ${\rm AVR\_IQL~500}$ 

AVR\_IQL?

<Response>

# AVR\_MOD

#### ■ Function

Average Count for Modulation Analysis

Sets the average (measurement) count (number of averaging processes) when Storage Mode is set to Average at Modulation Analysis measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AVR_MOD count   | AVR_MOD?      | count            |

#### ■ Parameter

count

Average (measurement) count

| Range    | Resolution | Initial value |
|----------|------------|---------------|
| 2 to 999 | 1          | 2             |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets Average Count to 500.

<Program>

DSPL MODANAL

 $STRG\_MODAVG$ 

 $AVR\_MOD 500$ 

AVR\_MOD?

<Response>

# AVR\_OBW

#### ■ Function

Average Count for Occupied Bandwidth

Sets the average (measurement) count (number of averaging processes) when Storage Mode is set to Average at Occupied Bandwidth measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AVR_OBW count   | AVR_OBW?      | count            |

#### ■ Parameter

count

Average count

| Range    | Resolution | Initial value |
|----------|------------|---------------|
| 2 to 999 | 1          | 2             |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets Average Count to 500 at Occupied Bandwidth measurement.

<Program>

DSPL OBW

STRG\_OBW AVG

 $AVR_OBW$  500

AVR\_OBW?

<Response>

# **AVR\_RFPWR**

#### **■** Function

Average Count for RF Power

Sets the average (measurement) count when the Storage Mode is Average at RF Power measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AVR_RFPWR count | AVR_RFPWR?    | count            |

#### ■ Parameter

count

Average (measurement) count

| Range    | Resolution | Initial value |
|----------|------------|---------------|
| 2 to 999 | 1          | 2             |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets Average Count to 500.

<Program>

DSPL RFPWR

STRG\_RFPWR AVG

AVR\_RFPWR 500

AVR\_RFPWR?

<Response>

# AVR\_SRERR

#### ■ Function

Average Count for Symbol Rate Error

Sets the average (measurement) count when Storage Mode is set to Average in Symbol Rate Error measurement.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AVR_SRERR count | AVR_SRERR?    | count            |

#### ■ Parameter

count

Average (measurement) count

| Range    | Resolution | Initial value |
|----------|------------|---------------|
| 2 to 999 | 1          | 2             |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets Average Count in Symbol Rate Error measurement to 10.

<Program>

DSPL SRERR

STRG\_SRERR AVG

AVR\_SRERR 10

AVR\_SRERR?

<Response>

# AVR\_SMASK

#### ■ Function

Average Count for Spectrum Mask

Sets the average (measurement) count (number of averaging processes) when Storage Mode is set to Average at Spectrum Mask measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AVR_SMASK count | AVR_SMASK?    | count            |

#### ■ Parameter

count

Average count

| Range    | Resolution | Initial value |
|----------|------------|---------------|
| 2 to 999 | 1          | 2             |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets Average Count to 500 at Spectrum Mask measurement.

<Program>

 $\operatorname{DSPL}\operatorname{SMASK}$ 

STRG\_SMASK AVG

AVR\_SMASK 500

AVR\_SMASK?

<Response>

# **AVR\_SPU**

#### **■** Function

Average Count for Spurious Emission

Sets the average (measurement) count (number of averaging processes) when storage mode is set to Average at spurious emission measurement.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| AVR_SPU count   | AVR_SPU?      | count            |

#### ■ Parameter

count

Average count

| Range    | Resolution | Initial Value |
|----------|------------|---------------|
| 2 to 999 | 1          | 2             |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets Average Count to 500 at Spurious Emission measurement.

<Program>

DSPL SPURIOUS, SWEEP

STRG\_SPU AVG

AVR\_SPU 500

AVR\_SPU?

<Response>

# **BAND**

#### ■ Function

Preselector

Sets signal path.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| BAND pre        | BAND?         | pre              |

#### ■ Parameter

pre

Preselector setting

| Value | Preselector Setting | Initial Value |
|-------|---------------------|---------------|
| 0     | Normal              | *             |
| 1     | Spurious            |               |

# ■ Initialization command

\*RST

# ■ Use example

Sets Preselector to Spurious.

<Program>

BAND 1

BAND?

<Response>

1

## ■ Note

This function is optional.

# BIN

#### ■ Function

Sets ASCII or binary format to read the waveform data.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| BIN format      | BIN?          | format           |

# ■ Parameter

format

Specification of ASCII or binary format

| Value | ASCII/Binary  | Initial value |
|-------|---------------|---------------|
| ON    | Binary format | *             |
| 1     |               | *             |
| OFF   | ASCII format  |               |
| 0     |               |               |

#### ■ Initialization command

\*RST

# ■ Use example

Reads the waveform data in binary format.

<Program>

BIN ON

BIN?

<Response>

ON

# **BRST\_DETLVL**

### **■** Function

Burst Detection Level

Sets the threshold to detect the rising or falling of the burst signal.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| BRST_DETLVL $r$ | BRST_DETLVL?  | r                |

### ■ Parameter

r

Threshold level

| Range      | Resolution | Unit | Initial value |
|------------|------------|------|---------------|
| -20  to  0 | 1          | None | 0             |

### ■ Restrictions

• This command is invalid when Preamble Search and Ramp-down Detection are set to On and Off, respectively.

# ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets the threshold to – 10.

<Program>

DSPL RFPWR

 ${\tt BRST\_DETLVL-10}$ 

BRST\_DETLVL?

<Response>

-10

# **BRST\_DETOFFSET**

### **■** Function

Burst Detection Offset

Sets the time axis offset value at the time of displaying the transient waveform of the burst signal.

# ■ Syntax

| Program Message    | Query Message   | Response Message |
|--------------------|-----------------|------------------|
| BRST_DETOFFSET $t$ | BRST_DETOFFSET? | t                |

### ■ Parameter

t.

### Offset value

| Range      | Resolution | Unit | Initial value |
|------------|------------|------|---------------|
| -2  to  +2 | 0.1        | None | 0             |

### ■ Restrictions

• This command is invalid when Preamble Search and Ramp-down Detection are set to On and Off, respectively.

# ■ Initialization command

PRE

INI

ΙP

\*RST

### ■ Use example

Sets the offset value to -2.

<Program>

 $\operatorname{DSPL}\operatorname{RFPWR}$ 

 ${\tt BRST\_DETOFFSET-2}$ 

BRST\_DETOFFSET?

<Response>

-2

# BS

### ■ Function

Back Screen

Switches the screen from the current screen to the upper-layer screen by one rank.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| BS              |               |                  |

# ■ Use example

Moves to the upper screen.

<Program>

BS

### ■ Remarks

• The Setup Common Parameter is the uppermost screen.

# **CALSTAT**

### **■** Function

Calibration Status

Outputs the status of level calibration and pre-selector tuning.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | CALSTAT? a    | b,c,d,e,f,g,h,i  |

### ■ Parameter

я

Calibration method to be read out

| Value | Calibration Method                           |  |
|-------|----------------------------------------------|--|
| LVL   | Level calibration (using calibration signal) |  |
| PSL   | Pre-selector tuning                          |  |
| PWR   | Level calibration (using power meter)        |  |

b

Status

| Level Calibration (using calibration signal) | Level Calibration<br>(using power meter)<br>Pre-selector Tuning | Status                         |
|----------------------------------------------|-----------------------------------------------------------------|--------------------------------|
| 0                                            | 0                                                               | Calibration completed normally |
| _                                            | 1                                                               | RF input level limit           |
| _                                            | 4                                                               | Receiving abnormal signal      |
| _                                            | 7                                                               | No input signal                |
| 8                                            | 8                                                               | Calibration failed             |
| 9                                            | 9                                                               | Not calibrated                 |

b, d, e

Calibration date

c: last two digits of year, d: month, e: day

f, g, h

Calibration time

f: hour (24-hour system), g: minute, h: second

i

Frequency at which pre-selector is tuned

| Value        | Resolution | Unit  |  |
|--------------|------------|-------|--|
| 3201 to 6000 | 1          | m MHz |  |

Frequency at which level calibration (using power meter) is performed

| Value      | Resolution Unit |     |
|------------|-----------------|-----|
| 30 to 6000 | 1               | MHz |

### ■ Restrictions

• For the calibration date, calibration time, and frequency at which the pre-selector is tuned or level calibration (using power meter) is performed, "\*\*\*" is read out if the calibration status is other than normal end.

### ■ Initialization command

PRE

INI

IP

\*RST

### ■ Use example

Reads out the status of pre-selector tuning.

<Program>

DSPL MODANAL

CALSTAT? PSL

<Response>

0,02,09,13,22,01,52,5170

# **CALVAL**

### **■** Function

Power Calibration Value

Sets the calibration value by Level Calibration (using PM).

# ■ Syntax

| Program Message | Query Message | Response Message  |
|-----------------|---------------|-------------------|
| CALVAL callevel | CALVAL?       | calmode, callevel |

### ■ Parameter

callevel

Calibration value

| Range             | Resolution | Initial value | Unit |
|-------------------|------------|---------------|------|
| -10.00 to $10.00$ | 0.01       | 0.00          | dB   |

#### calmode

# Calibration mode

| Value | Calibration mode     | Initial value |
|-------|----------------------|---------------|
| 0     | Not calibrated       | *             |
| 1     | Internal calibration |               |
| 2     | External calibration |               |

### ☐ Suffix code

None: dB DBM: dB

# ■ Restrictions

• This command is enabled only when Terminal is other than IQ-DC, IQ-AC, and IQ-Balance (cf. TERM).

### ■ Use example

Sets the calibration value to 5 dB.

<Program>

CALVAL 5.00

CALVAL?

<Response>

2,5.00

# **CARRF**

### ■ Function

Carrier Frequency

Outputs the carrier frequency at Modulation Analysis measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | CARRF?        | freq             |

### ■ Parameter

freq

Carrier frequency

| Resolution | Unit       |
|------------|------------|
| 0.1        | $_{ m Hz}$ |

# ■ Use example

Reads out the carrier frequency.

<Program>

MEAS MODANAL

CARRF?

<Response>

5170000123.4

# **CARRFERR**

### **■** Function

Carrier Frequency Error

Outputs the carrier frequency error at Modulation Analysis measurement.

# ■ Syntax

| Program Message | Query Message  | Response Message |
|-----------------|----------------|------------------|
|                 | CARRFERR? unit | freq             |

### ■ Parameter

unit

Output unit

| Value | Output Unit |
|-------|-------------|
| None  | Hz          |
| HZ    | Hz          |
| PPM   | ppm         |

# freq

Frequency error

| Resolution | Out Unit   |
|------------|------------|
| 0.1        | $_{ m Hz}$ |
| 0.001      | ppm        |

### ■ Use example

Reads out the carrier frequency error.

<Program>

MEAS MODANAL

CARRFERR? HZ

<Response>

-14.5

# **CARRLK**

### **■** Function

Carrier Leak

Outputs the carrier leak component (sub-carrier 0) at Modulation Analysis measurement.

### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | CARRLK?       | leakpwr          |

#### ■ Parameter

leakpwr

Carrier Leak

| Resolution | Output Unit |
|------------|-------------|
| 0.01       | dB          |

### ■ Restrictions

• This command cannot be executed when Target System is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) (cf. TGTSY).

### ■ Use example

Reads out the carrier leak.

<Program>

DSPL MODANAL

SWP

CARRLK?

<Response>

-12.34

# **CCDFDSTRBT**

### ■ Function

Distribution for CCDF

Outputs distribution waveform at CCDF measurement.

# ■ Syntax

| Program Message | Query Message     | Response Message |
|-----------------|-------------------|------------------|
|                 | CCDFDSTRBT? a,b,c | d(1),b(2),,d(b)  |

### ■ Parameter

a

Data reading start-position

| Range           | Resolution | Unit | Measure Method |
|-----------------|------------|------|----------------|
| -50.0 to $50.0$ | 0.1        | dB   | APD            |
| 0.0 to 50.0     | 0.1        | dB   | CCDF           |

b

Number of data reading

| Range     | Resolution | Measure Method |
|-----------|------------|----------------|
| 1 to 1001 | 1          | APD            |
| 1 to 501  | 1          | CCDF           |

c

Output waveform data

| Value | Output waveform data                                                                      |  |
|-------|-------------------------------------------------------------------------------------------|--|
| None  | Outputs the measured waveform date                                                        |  |
| 0     | Outputs the measured waveform data                                                        |  |
| 1     | Outputs the waveform data of Trace set at Save Reference Trace ( <i>cf.</i> SAVETR_CCDF). |  |
| 2     | Outputs the waveform data of Gaussian Trace.                                              |  |

d(n)

Reading data

| Range               | Resolution |
|---------------------|------------|
| 0.0001 to<br>1.0000 | 0.0001     |

# ■ Use example

Reads out 5 distribution waveforms from memory address 0.

<Program>

 ${\tt DSPL\ CCDF, CCDF}$ 

SWP

CCDFDSTRBT? 0,5

<Response>

0.5123, 0.2432, 0.1234, 0.1123, 0.0123

# **CCERR**

### **■** Function

Chip Clock Error

Outputs the Chip Clock Frequency Error in Chip Clock Error measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | CCERR?        | а                |

#### ■ Parameter

a

Chip Clock Frequency Error

| Resolution | Range            | Unit |
|------------|------------------|------|
| 0.1        | -60.0  to  +60.0 | ppm  |

• "\*\*\*" is displayed when the display range is exceeded or the measured results becomes "Signal abnormal."

### ■ Use example

Outputs the Chip Clock Frequency Error in Chip Clock Error measurement.

<Program>

DSPL CCERR

MEAS CCERR

CCERR?

<Response>

-10.3

# **CHPWR**

### **■** Function

Adjacent Channel Power

Reads out the result of Adjacent Channel Power measurement.

This command functions the same as the ADJCH command.

# ■ Syntax

| Program Message | Query Message       | Response Message     |
|-----------------|---------------------|----------------------|
|                 | CHPWR? offset       | level                |
|                 | CHPWR? offset, unit | level                |
|                 | CHPWR? ALL          | low2, low1, up1, up2 |
|                 | CHPWR? ALL, unit    | low2, low1, up1, up2 |

### ■ Parameter

offset

Offset frequency

| Value | Offset Frequency   |
|-------|--------------------|
| LOW2  | $-40~\mathrm{MHz}$ |
| LOW1  | $-20~\mathrm{MHz}$ |
| UP1   | 20 MHz             |
| UP2   | 40 MHz             |

### unit

Unit

| Value | Offset Frequency   |
|-------|--------------------|
| None  | Set value for unit |
| DB    | dB                 |
| DBM   | dBm                |
| MW    | mW                 |
| UW    | uW                 |
| NW    | nW                 |

### level

Level at the frequency specified by the offset.

| Resolution | Unit               |
|------------|--------------------|
| 0.01       | Set value for unit |

# low2

Level at −40 MHz

| Resolution | Unit               |  |
|------------|--------------------|--|
| 0.01       | Set value for unit |  |

### low1

Level at -20 MHz

| Resolution | Unit               |
|------------|--------------------|
| 0.01       | Set value for unit |

# up1

Level at  $20~\mathrm{MHz}$ 

| Resolution | Unit               |
|------------|--------------------|
| 0.01       | Set value for unit |

# up2

Level at 40 MHz

| Resolution | Unit               |
|------------|--------------------|
| 0.01       | Set value for unit |

# ■ Use example

Reads out the level at the offset frequency 20 MHz at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

SWP

CHPWR? UP1,DB

<Response>

-30.34

# CNT\_BCH

### **■** Function

Batch Measurement

Sets the measurement count (the number of measurement processes) for each measurement item at batch measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| CNT_BCH item, n | CNT_BCH? item | n                |

### ■ Parameter

item

### Measurement Item

| mode | Measurement Item                   | Initial value |
|------|------------------------------------|---------------|
| MOD  | Modulation analysis measurement    | 1             |
| PWR  | RF power measurement               | 1             |
| OBW  | Occupied bandwidth measurement     | 1             |
| ACP  | Adjacent channel power measurement | 1             |
| MSK  | Spectrum Mask measurement          | 1             |

n

# Measurement Count

| Range    | Resolution | Initial value |
|----------|------------|---------------|
| 1 to 999 | 1          | 1             |

### ■ Initialization command

PRE

INI

IP

\*RST

### ■ Use example

Sets the count of the modulation analysis measurement to 10 (times) at batch measurement.

<Program>

DSPL  $SETTBL_BCH$ 

CNT\_BCH MOD, 10

CNT\_BCH? MOD

<Response>

# **CONSTVIEW**

#### **■** Function

Constellation View

Sets the waveform display position on the constellation waveform display.

### ■ Syntax

| Program Message       | Query Message  | Response Message |
|-----------------------|----------------|------------------|
| CONSTVIEW mode        | CONSTVIEW?     | mode             |
| CONSTVIEW ONE, number | CONSTVIEW? ONE | number           |

### ■ Parameter

mode: waveform display position

| Value of mode | Waveform display position                                       | Initial value |
|---------------|-----------------------------------------------------------------|---------------|
| ALL           | Displays all the waveforms.                                     | *             |
| FIRST         | Displays the first symbol only.                                 |               |
| LAST          | Displays the analyzed last symbol only.                         |               |
| PILOT         | Displays the pilot signal of all the symbols.                   |               |
| OUT           | Displays the external sub-carrier (-26, 26) of all the symbols. |               |

### number: sub-carrier number

| Value of number     | Waveform position                           |
|---------------------|---------------------------------------------|
| -26  to -1, 1 to 26 | Displays Sub-carrier indicated with number. |

### ■ Restrictions

- This setting is valid only when Trace Format is Constellation (cf. TRFORM).
- This setting is valid only when Marker is Normal (cf. MKR\_MOD).
- This setting is invalid when Target System is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) (cf. TGTSY).
- A setup of first symbol and last symbol is invalid when Target System is HiSWANa and Data Rate is Auto.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Displays the constellation of sub-carrier -12. <Program> DSPL MODANAL TRFORM CONSTEL SWP CONSTVIEW ONE, -12 CONSTVIEW? ONE

<Response>

-12

### **CONTS**

#### ■ Function

Continuous Measure/Sweep

Executes continuous measurement and sweeping.

Accepts a command even during a measurement.

Suspends the current measurement and starts a new measurement when a measurement execution command, such as the CONTS command, is received during a measurement.

When an operation command not related to the current measurement (for example, the INTPOL command and query message) is received during a measurement, it continues carrying out the current measurement while responding to the command.

However, when a measurement related command is received during the current measurement, it suspends the measurement and executes the operation requested by the command.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| CONTS           |               |                  |

#### ■ Restrictions

• When the measurement screen is Spurious Emissions or CCDF, measurement and sweeping is not executed continuously but once (same function as the SNGLS command).

# ■ Use example

Continuously executes measurement and sweeping.

<Program>

CONTS

# **CORR**

### **■** Function

Correction

Selects a correction data table for level correction.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| CORR table      | CORR?         | table            |

#### ■ Parameter

table

Correction data table

| Value | Correction Data Table             | Initial value |
|-------|-----------------------------------|---------------|
| 0     | Does not perform data correction. | *             |
| 1     | Table 1                           |               |
| 2     | Table 2                           |               |
| 3     | Table 3                           |               |
| 4     | Table 4                           |               |
| 5     | Table 5                           |               |

### ■ Restrictions

• The setting is not enabled when Terminal is IQ.

### ■ Initialization command

\*RST

### ■ Use example

Selects Correction Data Table 3.

<Program>

CORR 3

CORR?

<Response>

# **DATRATE**

### **■** Function

Data Rate

Sets the transmission speed of the measured signal.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DATRATE rate    | DATRATE?      | rate             |

#### ■ Parameter

rate

Transmission speed

| Value                                 | Unit | Target System                                                   | Initial value |
|---------------------------------------|------|-----------------------------------------------------------------|---------------|
| 6, 9, 12, 18, 24, 36, 48, 54,<br>AUTO | Mbps | IEEE802.11a, IEEE802.11g (ERP-OFDM),<br>IEEE802.11g (DSSS-OFDM) | 24 Mbps       |
| 6, 9, 12, 18, 27, 36, 54              | Mbps | HiperLAN2                                                       | 27 Mbps       |
| 6, 9, 12, 18, 27, 36,<br>54,AUTO      | Mbps | HiSWANa                                                         | 27 Mbps       |
| 1, 2, 5.5, 11, AUTO                   | Mbps | IEEE802.11b,<br>IEEE802.11g (ERP-DSSS/CCK)                      | 11 Mbps       |

### ■ Restrictions

• The setting of AUTO is valid only when Measuring Object is Burst.

# ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets the transmission speed to 48 Mbps.

<Program>

TGTSY 11A

DATRATE48

DATRATE?

<Response>

# DCOUNT\_CCDF

### **■** Function

Measurement Data Count for CCDF

Sets the number of measured data on the CCDF screen.

### ■ Syntax

| Program Message   | Query Message | Response Message |
|-------------------|---------------|------------------|
| DCOUNT_CCDF count | DCOUNT_CCDF?  | count            |

#### ■ Parameter

count

Number of measured data

| Value               | Resolution | Initial value |
|---------------------|------------|---------------|
| 10000 to 2000000000 | 1          | 1000000       |

### ☐ Suffix code

None: 1 point KP: K point MP: M point GP: G point

### ■ Initialization command

PRE

INI

ΙP

\*RST

### ■ Use example

Sets the number of measured data to 10000.

<Program>

 ${\tt DSPL\ CCDF, CCDF}$ 

DCOUNT\_CCDF 10KP

DCOUNT\_CCDF?

<Response>

# DELTAMKR\_CCDF

### **■** Function

Data marker Value for CCDF

Outputs power deviation and probability of Delta Marker on the CCDF screen.

Outputs either power deviation or probability depending on Display Data Type (cf. DISPTYPE\_CCDF) after Delta marker is set by setting value of Reference Trace (cf. REFTR\_CCDF).

| Reference Trace | Delta Marker                 |
|-----------------|------------------------------|
| Save Trace      | Measure Trace-Save Trace     |
| Gaussian Trace  | Measure Trace-Gaussian Trace |
| Save & Gaussian | Measure Trace-Save Trace     |
| Off             | Not output                   |

| Display data Type | Output-format   |
|-------------------|-----------------|
| Distribution      | Power deviation |
| Probability       | Probability     |

### ■ Syntax

| Program Message | Query Message  | Response Message |
|-----------------|----------------|------------------|
|                 | DELTAMKR_CCDF? | a                |

### ■ Parameter

a

# Output data

| Resolution | Unit | Output-format   |
|------------|------|-----------------|
| 0.0001     | %    | Probability     |
| 0.1        | dB   | Power deviation |

### ■ Restrictions

• When Marker is Off or Reference Trace is Off, output is disabled (cf. MKR\_CCDF).

### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Reads out difference of power deviation.

<Program>

 ${\tt DSPL\ CCDF, CCDF}$ 

 $MKR\_CCDF\ VERT$ 

REFTR\_CCDF SAVE

SWP

DELTAMKR\_CCDF?

<Response>

5.12

# DET\_ADJ

#### ■ Function

Detection Mode for Adjacent Channel Power

Sets the detection mode for Spectrum Analyzer at Adjacent Channel Power measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DET_ADJ mode    | DET_ADJ?      | mode             |

### ■ Parameter

mode

Detection mode

| Value | Mode                                     | Initial value |
|-------|------------------------------------------|---------------|
| POS   | Sets the detection mode to Positive Peak | *             |
| NEG   | Sets the detection mode to Negative Peak |               |
| SMP   | Sets the detection mode to Sample        |               |
| AVG   | Sets the detection mode to Average       |               |
| RMS   | Sets the detection mode to RMS           |               |

#### ■ Restrictions

• The RMS detection mode can be set only when Option 04 is installed and RBW Mode is set to Digital.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

### ■ Use example

Sets the detection mode for Spectrum Analyzer to Sample at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

DET\_ADJ SMP

DET\_ADJ?

<Response>

SMP

# **DET\_OBW**

### **■** Function

Detection Mode for Occupied Bandwidth

Sets the detection mode for Spectrum Analyzer at Occupied Bandwidth measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DET_OBW mode    | DET_OBW?      | mode             |

### ■ Parameter

mode

Detection mode

| Value | Mode                                     | Initial value |
|-------|------------------------------------------|---------------|
| POS   | Sets the detection mode to Positive Peak | *             |
| NEG   | Sets the detection mode to Negative Peak |               |
| SMP   | Sets the detection mode to Sample        |               |
| AVG   | Sets the detection mode to Average       |               |
| RMS   | Sets the detection mode to RMS           |               |

#### ■ Restrictions

• The RMS detection mode can be set only when Option 04 is installed and RBW Mode is set to Digital.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

### ■ Use example

Sets the detection mode for Spectrum Analyzer to Sample at Occupied Bandwidth measurement.

<Program>

DSPL OBW

DET\_OBW SMP

DET\_OBW?

<Response>

SMP

# **DET\_SMASK**

### **■** Function

Detection Mode for Spectrum Mask

Sets the detection mode for Spectrum Analyzer at Spectrum Mask measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DET_SMASK mode  | DET_SMASK?    | mode             |

### ■ Parameter

mode

Detection mode

| Value | Mode                                     | Initial value |
|-------|------------------------------------------|---------------|
| POS   | Sets the detection mode to Positive Peak | *             |
| NEG   | Sets the detection mode to Negative Peak |               |
| SMP   | Sets the detection mode to Sample        |               |
| AVG   | Sets the detection mode to Average       |               |
| RMS   | Sets the detection mode to RMS           |               |

#### ■ Restrictions

• The RMS detection mode can be set only when Option 04 is installed and RBW Mode is set to Digital.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

### ■ Use example

Sets the detection mode for Spectrum Analyzer to Sample at Spectrum Mask measurement.

<Program>

DSPL SMASK

DET\_SMASK SMP

DET\_SMASK?

<Response>

SMP

# **DET\_SPU**

### ■ Function

Detection Mode for Spurious Emission

Sets the detection mode at spurious emission measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DET_SPU a, b    | DET_SPU? a    | b                |

#### ■ Parameter

а

### Measure Method

| Value  | Measure Method        |  |
|--------|-----------------------|--|
| SPOT   | At spot measurement   |  |
| SEARCH | At search measurement |  |
| SWEEP  | At sweep measurement  |  |

b

### Detection mode

| Value | Mode          | Initial Value |
|-------|---------------|---------------|
| POS   | Positive Peak | *             |
| NEG   | Negative Peak |               |
| SMP   | Sample        |               |
| AVG   | Average       |               |
| RMS   | RMS           |               |

# ■ Restrictions

- Measurement is performed via detection mode with this command at Search measurement, but is performed by fixing the detection mode to Sample at spurious level measurement.
- $\bullet\,$  The RMS detection mode can be set only when Option 04 is installed and RBW Mode is set to Digital.

# ■ Initialization command

PRE

INI

IΡ

\*RST

# ■ Use example

To set the detection mode in spot measurement to Average at spurious emission measurement.

<Program>

 ${\tt DET\_SPU\ SPOT, AVG}$ 

 ${\tt DET\_SPU?\ SPOT}$ 

<Response>

AVG

# DFLTPAR\_BCH

#### ■ Function

Batch Measurement

For batch measurement, restores all the parameter values set in the spectrum analyzer for measuring occupied frequency bandwidth, adjacent channel leakage power and spectrum mask to their default values.

### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DFLTPAR_BCH     |               |                  |

### ■ Use example

For batch measurement, restores all the parameter values set in the spectrum analyzer for measuring occupied frequency bandwidth, adjacent channel leakage power and spectrum mask to their default values.

<Program>
DSPL SETTBL\_BCH
DFLTPAR\_BCH

# DISP\_REFLVL

### **■** Function

Reference of waveform display for RF Power

Sets the reference for waveform display on the RF Power Measurement screen.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DISP_REFLVL ref | DISP_REFLVL?  | ref              |

### ■ Parameter

### ref. Reference

| Value | Reference                                       | Initial Value |
|-------|-------------------------------------------------|---------------|
| AVE   | Average: Sets the average power to 0 dB (100%). | *             |
| MAX   | Maximum: Sets the maximum power to 0 dB (100%). |               |

### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets the maximum power as reference.

<Program>

DSPL RFPWR

DISP\_REFLVL MAX

DISP\_REFLVL?

<Response>

MAX

# DISPTYPE\_CCDF

### **■** Function

Display Data Type for CCDF

Sets the display format of grid on the CCDF screen.

# ■ Syntax

| Program Message | Query Message  | Response Message |
|-----------------|----------------|------------------|
| DISPTYPE_CCDF a | DISPTYPE_CCDF? | a                |

### ■ Parameter

я

Display format of grid

| Value  | Display format                                                 | Initial value |
|--------|----------------------------------------------------------------|---------------|
| PROB   | Displays probability of waveform for grid of vertical axis.    | *             |
| DSTRBT | Displays distribution of waveform for grid of horizontal axis. |               |

### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets Distribution to PROB.

<Program>

DSPL CCDF,CCDF

DISPTYPE\_CCDF PROB

DISPTYPE\_CCDF?

<Response>

PROB

# **DISPTYPE\_SMASK**

### **■** Function

Display Data Type for Spectrum Mask

Sets the method for displaying the measured results at Spectrum Mask measurement.

# ■ Syntax

| Program Message     | Query Message   | Response Message |
|---------------------|-----------------|------------------|
| DISPTYPE_SMASK type | DISPTYPE_SMASK? | type             |

### ■ Parameter

type

Measurement standard

| Value  | Description                                                            | Initial value |
|--------|------------------------------------------------------------------------|---------------|
| LVL    | Displays the measurement level                                         | *             |
| MARGIN | Displays the difference between the measurement level and the template |               |

### ■ Initialization command

PRE

INI

ΙP

\*RST

### ■ Use example

Displays MARGIN as the measured result at Spectrum Mask measurement.

<Program>

DSPL SMASK

DISPTYPE\_SMASK MARGIN

DISPTYPE\_SMASK?

<Response>

MARGIN

# **DPTS\_ADJ**

### ■ Function

Data Points: 501/1001 for Adjacent Channel Power

Sets the number of data obtained by executing the sweep of Spectrum Analyzer at Adjacent Channel Power measurement.

### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DPTS_ADJ $p$    | DPTS _ADJ?    | p                |

### ■ Parameter

p

Number of data

| Value | Number of data      | Initial value |
|-------|---------------------|---------------|
| 501   | 501 points of data  | *             |
| 1001  | 1001 points of data |               |

### ■ Initialization command

PRE

INI

IP

\*RST

### ■ Use example

Sets the number of sweep data for Spectrum Analyzer to 1001 points at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

 $DPTS\_ADJ~1001$ 

DPTS\_ADJ?

<Response>

# **DPTS\_OBW**

### **■** Function

Data Points: 501/1001 for Occupied Bandwidth

Sets the number of data obtained by executing the sweep of Spectrum Analyzer at Occupied Bandwidth measurement.

### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| DPTS_OBW p      | DPTS _OBW?    | p                |

### ■ Parameter

p

Number of data

| Value | Number of data      | Initial value |
|-------|---------------------|---------------|
| 501   | 501 points of data  | *             |
| 1001  | 1001 points of data |               |

### ■ Initialization command

PRE

INI

IP

\*RST

### ■ Use example

Sets the number of sweep data for Spectrum Analyzer to 1001 points at Occupied Bandwidth measurement.

<Program>

DSPL OBW

 $DPTS\_OBW\ 1001$ 

DPTS\_OBW?

<Response>

# **DSPL**

### ■ Function

Sets the measurement screen and measurement method, but does not start a measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |  |
|-----------------|---------------|------------------|--|
| DSPL meas, mode | DSPL?         | meas,mode        |  |
| DSPL meas       | DSPL?         | meas             |  |

### ■ Parameter

 $\textit{meas:}\, \text{Name} \text{ of the measurement screen}$ 

*mode:* Measurement method/template type

| Value of meas  | Measurement screen name | Value of mode          | Measurement method/<br>template type | Initial<br>value | Input terminal (->TERM)      |  |
|----------------|-------------------------|------------------------|--------------------------------------|------------------|------------------------------|--|
| SETCOM         | Setup Common Parameter  | None                   |                                      | *                |                              |  |
| MODANAL        | Modulation Analysis     | None                   |                                      |                  |                              |  |
| RFPWR          | RF Power                | None                   |                                      |                  | RF,                          |  |
| CCERR          | Chip Clock Error        | None                   |                                      |                  | IQ-DC IQ-AC IQ-Balance       |  |
| SRERR          | Symbol Rate Error       | None                   |                                      |                  |                              |  |
| CCDF           | CCDF                    | CCDF                   | CCDF                                 |                  |                              |  |
|                |                         | APD                    | APD                                  |                  |                              |  |
| OBW            | Occupied Bandwidth      | None                   |                                      |                  |                              |  |
| ADJ            | Adjacent Channel Power  | SPECT1                 | Spectrum (All)                       |                  |                              |  |
|                |                         | SPECT2                 | Spectrum (Separate)                  |                  |                              |  |
| PWRMTR         | Power Meter             | None                   |                                      |                  |                              |  |
|                |                         | SMASK                  | Mask                                 |                  |                              |  |
| SMASK          | Spectrum Mask           | SET-<br>TEMP_SM<br>ASK | Template                             |                  | RF                           |  |
| SPURIOUS       | Spurious                | SPOT                   | Spot                                 |                  |                              |  |
|                |                         | SEARCH                 | Search                               |                  |                              |  |
|                |                         | SWEEP                  | Sweep                                |                  |                              |  |
| SETTBL_<br>SPU | Setup Table of Spurious | SPOT                   | Spot                                 |                  |                              |  |
|                |                         | SWEEP                  | Sweep                                |                  |                              |  |
| ВАТСН          | Batch                   | None                   |                                      |                  | RF,<br>IQ-DC                 |  |
| SETTBL_<br>BCH | Setup Measure Table     | None                   |                                      |                  | IQ-AC<br>IQ-Balance          |  |
| IQLVL          | IQ Level                | None                   |                                      |                  | IQ-DC<br>IQ-AC<br>IQ-Balance |  |

#### ■ Restrictions

- Transition to the Chip Clock Error screen is enabled only when Target System is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK).
- Transition to the Symbol Rate Error screen is enabled only when Target System is IEEE802.11a or IEEE802.11g (ERP-OFDM) or IEEE802.11g(DSSS-OFDM).
- Transition to the Power Meter screen is enabled only when Measuring Object is Continuous.

### ■ Initialization command

PRE

INI

IΡ

\*RST

### ■ Use example

[1] Moves to Modulation Analysis screen.

<Program>

DSPL MODANAL

DSPL?

<Response>

**MODANAL** 

[2] Moves APD measurement on the CCDF screen.

<Program>

DSPL CCDF,APD

DSPL?

<Response>

CCDF,APD

## **ERRSC**

#### ■ Function

Error Scale for Constellation

Sets a circle that shows the error range of each symbol in the Constellation display mode at Modulation Analysis measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |  |
|-----------------|---------------|------------------|--|
| ERRSC scale     | ERRSC?        | scale            |  |

### ■ Parameter

scale

Error range

| Value | Resolution | Initial value |
|-------|------------|---------------|
| 5     | 5%         |               |
| 10    | 10%        |               |
| 20    | 20%        |               |
| 35    | 35%        |               |
| OFF   | Off        | *             |

## ■ Restrictions

- Trace Format must be set to Constellation beforehand (cf. TRFORM).
- This setting can be set only when Modulation is BPSK and QPSK (cf. MODTYPE).
- Cannot be used when Data Rate is set to Auto.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the error scale to 20%

<Program>

MEAS MODANAL

TRFORM CONSTEL

ERRSC 20

ERRSC?

<Response>

20

# **EVMSUB**

#### **■** Function

EVM vs. Sub-carrier

Reads out EVM every Sub-carrier on the Modulation Analysis.

## ■ Syntax

| Program Message | Query Message  | Response Message                        |  |  |
|-----------------|----------------|-----------------------------------------|--|--|
|                 | EVMSUB? addr,n | data(addr),data(addr+1),,data(addr+n-1) |  |  |

#### ■ Parameter

addr

Starting address to read out data

| Value   | Resolution |
|---------|------------|
| 0 to 51 | 1          |

n

Number of data reading

| Value   | Resolution |  |
|---------|------------|--|
| 1 to 52 | 1          |  |

#### mod

## Modulation

| Value | Modulation       |  |
|-------|------------------|--|
| BPSK  | BPSK modulation  |  |
| QPSK  | QPSK modulation  |  |
| 16QAM | 16QAM modulation |  |
| 64QAM | 64QAM modulation |  |
| TOTAL | All modulation   |  |

## addr(addr)

Results of address addr

| Value      | Resolution | Output unit |
|------------|------------|-------------|
| 0 to 32768 | 1          | 0.01%       |

## ■ Data storage method

| Address            | 0   | 1   | <br>25 | 26 | <br>51 |
|--------------------|-----|-----|--------|----|--------|
| Sub-carrier number | -26 | -25 | <br>-1 | 1  | <br>26 |

#### ■ Restrictions

- This command cannot be executed when Target System is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) (cf. TGTSY).
- A setup of mod(modulation) is enabled only when Target System is HiSWANa and Data Rate is Auto.

## ■ Use example

Reads out 5 pieces of EVM vs. Sub-carrier from Sub-carrier number-26. <Program>
MEAS MODANAL
EVMSUB? 0,5

<Response> 123,234,135,257,149

# **EVMSYM**

## **■** Function

EVM vs. Symbol

Reads out EVM every Symbol on the Modulation Analysis screen.

## ■ Syntax

| Program Message | Query Message  | Response Message                        |  |  |
|-----------------|----------------|-----------------------------------------|--|--|
|                 | EVMSYM? addr,n | data(addr),data(addr+1),,data(addr+n-1) |  |  |

## ■ Parameter

addr

Starting address to read out data

| Target System                                                                          | Value                       | Resolution |
|----------------------------------------------------------------------------------------|-----------------------------|------------|
| IEEE802.11a, HiperLAN2, HiSWANa,<br>IEEE802.11g (ERP-OFDM),<br>IEEE802.11g (DSSS-OFDM) | 1 to 1367                   | 1          |
| HiSWANa(When Data Rate is not Auto.)                                                   | (Analysis Start)<br>to 1367 | 1          |
| IEEE802.11b,<br>IEEE802.11g (ERP-DSSS/CCK)                                             | 0 to 4095                   | 1          |

n

Number of data reading

| Target System                                                                          | Value                       | Resolution |
|----------------------------------------------------------------------------------------|-----------------------------|------------|
| IEEE802.11a, HiperLAN2, HiSWANa,<br>IEEE802.11g (ERP-OFDM),<br>IEEE802.11g (DSSS-OFDM) | 1 to 1367                   | 1          |
| HiSWANa(When Data Rate is not Auto.)                                                   | (Analysis Start)<br>to 1367 | 1          |
| IEEE802.11b,<br>IEEE802.11g (ERP-DSSS/CCK)                                             | 1 to 4096                   | 1          |

data(addr)

Results of address addr

| Value      | Resolution | Output unit |
|------------|------------|-------------|
| 0 to 32768 | 1          | 0.01%       |

## ■ Data storage method

| Target System                                                                             | Address       | 0 | 1 | 2 | <br>1367 | 4095     |
|-------------------------------------------------------------------------------------------|---------------|---|---|---|----------|----------|
| IEEE802.11a, HiperLAN2,<br>HiSWANa, IEEE802.11g<br>(ERP-OFDM), IEEE802.11g<br>(DSSS-OFDM) | Symbol number | I | 1 | 2 | <br>1367 | -        |
| IEEE802.11b,<br>IEEE802.11g (ERP-DSSS/CCK)                                                | Chip Number   | 0 | 1 | 2 | <br>1367 | <br>4095 |

## ■ Use example

Reads out 5 pieces of EVM vs. Symbol from Symbol number 1.

<Program>

MEAS MODANAL

EVMSYM? 1,5

<Response>

 $123,\!234,\!135,\!257,\!149$ 

# **EVM\_THRES**

#### **■** Function

**EVM Threshold** 

Sets On/Off of threshold of modulation accuracy in the Modulation Analysis screen.

## ■ Syntax

| Program Message  | Query Message | Response Message |
|------------------|---------------|------------------|
| EVM_THRES on/off | EVM_THRES?    | on/off           |

#### ■ Parameter

on/off

Threshold of modulation accuracy on/off

| Value | Threshold of modulation accuracy on/off        | Initial Value |
|-------|------------------------------------------------|---------------|
| OFF   | Does not set threshold of modulation accuracy. | *             |
| ON    | Sets threshold of modulation accuracy.         |               |

#### ■ Restrictions

• This command is enabled only when Target System is HiSWANa and Data Rate is Auto.

## ■ Use example

Sets in On threshold of modulation accuracy.

<Program>

TGTSY HISWAN

DATRATE AUTO

DSPL MODANAL

EVM\_THRES ON

EVM\_THRES?

<Response>

ON

## **FILTER**

## **■** Function

Filter Type

Sets the filter to be used to IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| FILTER type     | FILTER?       | type             |

#### ■ Parameter

type

Filter type

| Value | Filter Type                                                         | Initial Value |
|-------|---------------------------------------------------------------------|---------------|
| OFF   | Analyzes signals without using the filter processing.               | *             |
| RECT  | Analyzes signals that passed through the rectangular filter.        |               |
| GAUSS | Analyzes signals that passed through the Gaussian filter.           |               |
| RRC   | Analyzes signals that passed through the Root Raised Cosine filter. |               |

## ■ Restrictions

• This command is enabled when Target System is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) (cf. TGTSY).

## ■ Use example

Uses the Gaussian filter.

<Program>

TGTSY 11B

FILTER GAUSS

FILTER?

<Response>

**GAUSS** 

## **FLATIN**

#### ■ Function

Spectrum Flatness

Reads out spectrum flatness of the inside sub-carrier in the Modulation Analysis screen and the Batch Measurement screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | FLATIN?       | a,b,c,d          |

#### ■ Parameter

а

Maximum magnitude value

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

b

Sub-carrier number of maximum magnitude value

| Resolution | Range                  |
|------------|------------------------|
| 1          | -26  to  -1, 1  to  26 |

c

Minimum magnitude value

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

d

Sub-carrier number of minimum magnitude value

| Resolution | Range                  |  |
|------------|------------------------|--|
| 1          | -26  to  -1, 1  to  26 |  |

#### ■ Restrictions

• This command is enabled only when Target System is IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) or IEEE802.11g (DSSS-OFDM) while Measuring Object is Burst, and Terminal is RF.

## ■ Use example

Reads out spectrum flatness of the inside sub-carrier.

<Program>

TGTSY 11A

MEAS MODANAL

FLATIN?

<Response>

12.34, -16, -1.23, -10

## **FLATMEAS**

#### ■ Function

Spectrum Flatness

Sets out On/Off of spectrum flatness measurement in the Modulation Analysis screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| FLATMEAS a      | FLATMEAS?     | a                |

#### ■ Parameter

я

Flatness measurement

| а   | Flatness Measurement                            | Initial Value |
|-----|-------------------------------------------------|---------------|
| ON  | Performs Spectrum Flatness measurement.         |               |
| OFF | Does not perform Spectrum Flatness measurement. | *             |

#### ■ Restrictions

• This command is enabled only when Target System is IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) or IEEE802.11g (DSSS-OFDM) while Measuring Object is Burst, and Terminal is RF. But it is not enabled when Data Rate is Auto (for HiSWANa).

## ■ Use example

Performs spectrum flatness measurement.

<Program>

TGTSY 11A

DSPL MODANAL

FLATMEAS ON

FLATMEAS?

<Response>

ON

## **FLATOUT**

#### ■ Function

Spectrum Flatness

Reads out spectrum flatness of the outside sub-carrier in the Modulation Analysis screen and the Batch Measurement screen.

### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | FLATOUT?      | a,b,c,d          |

#### ■ Parameter

a

Maximum magnitude value

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

b

Sub-carrier number of maximum magnitude value

| Resolution | Range                  |
|------------|------------------------|
| 1          | -26  to  -1, 1  to  26 |

c

Minimum magnitude value

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

d

Sub-carrier number of minimum magnitude value

| Resolution | Range                  |  |
|------------|------------------------|--|
| 1          | -26  to  -1, 1  to  26 |  |

#### ■ Restrictions

• This command is enabled only when Target System is IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) or IEEE802.11g (DSSS-OFDM) while Measuring Object is Burst, and Terminal is RF.

## ■ Use example

Reads out spectrum flatness of the outside sub-carrier.

<Program>

TGTSY 11A

MEAS MODANAL

FLATOUT?

<Response>

12.34, -26, -1.23, -17

## **FREQ**

### ■ Function

Frequency

Sets the carrier frequency for the frequency targeted to be measured.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| FREQ freq       | FREQ?         | freq             |

#### ■ Parameter

freq

Carrier frequency

| Range                   | Target System                      | Resolution | Initial value | Unit       |
|-------------------------|------------------------------------|------------|---------------|------------|
| 100000000 to 3000000000 | IEEE802.11b, IEEE802.11g           |            | 2412000000    |            |
| 100000000 to 6000000000 | IEEE802.11a, HiperLAN2,<br>HiSWANa | 1          | 5170000000    | $_{ m Hz}$ |

#### ☐ Suffix code

None: Hz HZ: Hz

KHZ, KZ: kHz MHZ, MZ: MHz GHz, GZ: GHz

## ■ Restrictions

- This setting is not enabled when Terminal is not RF (cf. TERM).
- For the MS2681A, the setting range is from 100 MHz to 3 GHz regardless of Target System. Initial value is 2412 MHz.

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the carrier frequency to 1 GHz.

<Program>

TERM RF

FREQ 1GHZ

FREQ?

<Response>

1000000000

# FSPAN\_OBW

### ■ Function

Frequency Span for Occupied Bandwidth

Reads out the sweep frequency span for Spectrum Analyzer at Occupied Bandwidth measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | FSPAN_OBW?    | freq             |

## ■ Parameter

freq

Sweep frequency span

| Resolution | Unit       |
|------------|------------|
| 100000     | $_{ m Hz}$ |

## ■ Use example

Reads out the sweep frequency span for Spectrum Analyzer at Occupied Bandwidth measurement.

<Program>

DSPL OBW

FSPAN\_OBW?

<Response>

60000000

## **GAUSSBT**

#### **■** Function

Bandwidth-Time

Sets the BT product of the Gaussian filter to be used to IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| GAUSSBT bt      | GAUSSBT?      | bt               |

## ■ Parameter

bt

BT product

| Value      | Resolution | Initial Value |
|------------|------------|---------------|
| 0.3 to 1.0 | 0.1        | 0.5           |

## ■ Restrictions

• This command is enabled only when Target System is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) and Filter Type is Gaussian Filter (*cf.* TGTSY, FILTER).

## ■ Use example

Sets the BT product to 0.3.

<Program>

 $TGTSY\ 11B$ 

FILTER GAUSS

GAUSSBT 0.3

GAUSSBT?

<Response>

0.3

# HSCALE\_CCDF

#### **■** Function

Horizontal Scale for CCDF

Sets the scale of horizontal axis of trace on the CCDF screen.

## ■ Syntax

| Program Message   | Query Message | Response Message |
|-------------------|---------------|------------------|
| HSCALE_CCDF scale | HSCALE_CCDF?  | scale            |

#### ■ Parameter

scale

Setting trace

| Value | Maximum value on horizontal axis (Absolute value) | Initial value |
|-------|---------------------------------------------------|---------------|
| 2     | 2 dB                                              |               |
| 5     | 5 dB                                              |               |
| 10    | 10 dB                                             |               |
| 20    | 20 dB                                             | *             |
| 50    | 50 dB                                             |               |

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets Horizontal scale to 2 dB.

<Program>

 ${\tt DSPL\ CCDF, CCDF}$ 

HSCALE\_CCDF 2

HSCALE\_CCDF?

<Response>

2

# **ICONST**

#### **■** Function

## I Constellation

Reads out Constellation data of I-signal on the Modulation Analysis screen.

## ■ Syntax

| Program Message | Query Message      | Response Message                        |
|-----------------|--------------------|-----------------------------------------|
|                 | ICONST? addr,n,mod | data(addr),data(addr+1),,data(addr+n-1) |
|                 | ICONST? EYE,addr,n | data(addr),data(addr+1),,data(addr+n-1) |

#### ■ Parameter

addr

Starting address to read out data

| Target System                           | Value      |
|-----------------------------------------|------------|
| Other than the below                    | 0 to 71083 |
| IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) | 0 to 4095  |

n

Number of data reading

| Target System                           | Value      |  |
|-----------------------------------------|------------|--|
| Other than the below                    | 1 to 71084 |  |
| IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) | 1 to 4096  |  |

## mod

## Modulation

| Value | Modulation       |
|-------|------------------|
| BPSK  | BPSK modulation  |
| QPSK  | QPSK modulation  |
| 16QAM | 16QAM modulation |
| 64QAM | 64QAM modulation |

## data(addr)

Results of address addr

| Value           | Resolution |
|-----------------|------------|
| -32768 to 32767 | 1          |

 $\bullet~$  Sets in an integer of 0.001 unit so that an ideal signal "1" is 1000.

#### ■ Data storage method

Target System: IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM), IEEE802.11g (DSSS-OFDM)

| Address            | 0   | 1   |   | 51 | 52  |   | 103 | <br>71083 |
|--------------------|-----|-----|---|----|-----|---|-----|-----------|
| Symbol number      |     | -   | 1 |    |     | 2 |     | <br>1367  |
| Sub-carrier number | -26 | -25 |   | 26 | -26 |   | 26  | <br>26    |

Target System: IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) (Constellation data)

| Address     | 0 | 1 | <br>4095 |
|-------------|---|---|----------|
| Chip Number | 0 | 1 | <br>4095 |

Target System: IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) (Eye Diagram data)

| Address     | 0   | 1   | <br>40950  |
|-------------|-----|-----|------------|
| Chip Number | 0.0 | 0.1 | <br>4095.0 |

#### ■ Use example

Reads out 5 pieces of constellation data from memory address 0.

<Program>

MEAS MODANAL

ICONST? 0,5

#### <Response>

1234,2345,1357,2579,1496

#### ■ Note

•Output data will have a semicolon (;) added as a separator after every 5.000th data item if more than 5,000 data items in ASCII format are read out.

For example, the following shows a response message when 10,000 data items are read out:

data1, data2, data3, ..., data4999, data5000; data5001, data5002, ..., data9999, data10000

Note that a semicolon (;), not a comma (,), is inserted between data5000 and data5001.

·A setup of mod(modulation) is enabled only when Target System is HiSWANa and Data Rate is Auto.

# **ILVL**

## ■ Function

I Level (RMS)

Reads out the measured results of the I-signal RMS value on the IQ Level screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | ILVL? unit    | rms              |

#### ■ Parameter

unit

## Readout unit

| Value | Readout unit                    |
|-------|---------------------------------|
| None  | Current set unit (cf. UNIT_IQL) |
| MV    | mV                              |
| DBMV  | dBmV                            |

#### rms

## RMS value of I signal

| Resolution | Unit                                            |
|------------|-------------------------------------------------|
| 0.01       | Depends on the value specified by <i>unit</i> . |

## ■ Use example

Reads out the I Level (RMS) value.

<Program>

TERM IQAC

MEAS IQLVL

ILVL? MV

<Response>

1.42

# INI

## ■ Function

Initialize

Initializes all the measurement control parameters to be enabled for initialization. This command functions the same as the PRE and IP commands.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| INI             |               |                  |

## ■ Use example

Initializes all the parameters to be enabled for initialization.

<Program>

INI

# **INTEG\_ADJ**

#### ■ Function

Integral for Adjacent Channel Leakage Power

Reads out waveform integrated to the channel width on the Adjacent Channel Leakage Power screen.

## ■ Syntax

| Program Message | Query Message    | Response Message       |
|-----------------|------------------|------------------------|
|                 | INTEG _ADJ? a, b | c(a), c(a+1),,c(a+b-1) |

#### ■ Parameter

я

Read Out Starting Position

| Data Point | а         | Resolution |
|------------|-----------|------------|
| 1001       | 90 to 910 | 1          |
| 501        | 45 to 455 | 1          |

b

Read Out Count

| Data Point | b        | Resolution |
|------------|----------|------------|
| 1001       | 1 to 821 | 1          |
| 501        | 1 to 411 | 1          |

c(a)

a-th integrated waveform data

| Resolution | Unit |
|------------|------|
| 1          | dB   |

<sup>\*</sup> Output in 0.01 dB units assuming 1 dB = 100

#### ■ Restrictions

• This function is enabled only when Measure Method is set to Spectrum (All).

### ■ Use example

Reads out 5 integrated waveforms starting from address 100.

<Program>

DSPL ADJ, SPECT1

**SWP** 

INTEG\_ADJ? 100,5

## <Response>

$$-6345$$
,  $-6346$ ,  $-6347$ ,  $-5346$ ,  $-5345$ 

# INTVAL\_ADJ

#### ■ Function

Refresh Interval for Adjacent Channel Power

Sets the display updating interval when Storage Mode is set to Average at Adjacent Channel Power measurement.

## ■ Syntax

| Program Message   | Query Message | Response Message |
|-------------------|---------------|------------------|
| INTVAL_ADJ intval | INTVAL_ADJ?   | intval           |

#### ■ Parameter

intval

Updating interval

| Value | Updating interval                                                                                                                          | Initial value |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| EVERY | Updates the display after every one sweep. Calculates and displays the average value by the number of measurements repeated by that sweep. | *             |
| ONCE  | Updates the display once after completion of averaging. Calculates the average value by the times specified with Average Count.            |               |

## ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the updating interval to Once at Adjacent Channel Power measurement.

<Program>

DSPLADJ

INTVAL\_ADJ ONCE

 $INTVAL\_ADJ?$ 

<Response>

# INTVAL\_CCERR

#### **■** Function

Refresh Interval for Chip Clock Error

Sets the display updating interval when Storage Mode is set to Average in Chip Clock Error measurement.

## ■ Syntax

| Program Message     | Query Message | Response Message |
|---------------------|---------------|------------------|
| INTVAL_CCERR intval | INTVAL_CCERR? | intval           |

### ■ Parameter

intval

Updating interval

| Value | Updating interval                                                                                                                          | Initial value |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| EVERY | Updates the display after every sweep. Calculates and displays the average value among the number of measurements up to the last sweep.    |               |
| ONCE  | Updates the display once after completion of averaging. Calculates the average value among the number of times specified by Average Count. |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the updating interval in Chip Clock Error measurement to Once.

<Program>

DSPL CCERR

STRG\_CCERR AVG

INTVAL\_CCERR ONCE

INTVAL\_CCERR?

<Response>

# INTVAL\_IQL

## **■** Function

Refresh Interval for IQ Level

Sets the display updating interval when Storage Mode is set to Average in IQ Level measurement.

## ■ Syntax

| Program Message   | Query Message | Response Message |
|-------------------|---------------|------------------|
| INTVAL_IQL intval | INTVAL_IQL?   | intval           |

#### ■ Parameter

intval

Updating interval

| Value | Updating interval                                                                                                                          | Initial value |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| EVERY | Updates the display after every sweep. Calculates the average value among the number of measurements up to the last sweep.                 | *             |
| ONCE  | Updates the display once after completion of averaging. Calculates the average value among the number of times specified by Average Count. |               |

### ■ Initialization command

PRE

INI

IΡ

\*RST

## ■ Use example

Sets the updating interval to Once.

 $<\!\!\operatorname{Program}\!\!>$ 

TERM IQAC

MEAS IQLVL

INTVAL\_IQL ONCE

INTVAL\_IQL?

<Response>

# INTVAL\_MOD

#### **■** Function

Refresh Interval for Modulation Analysis

Sets the display updating interval when Storage Mode is set to Average at Modulation Analysis measurement.

## ■ Syntax

| Program Message   | Query Message | Response Message |
|-------------------|---------------|------------------|
| INTVAL_MOD intval | INTVAL_MOD?   | intval           |

### ■ Parameter

intval

Updating interval

| Value | Updating interval                                                                                                                          | Initial value |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| EVERY | Updates the display after every one sweep. Calculates and displays the average value by the number of measurements repeated by that sweep. | *             |
| ONCE  | Updates the display once after completion of averaging. Calculates the average value by the times specified with Average Count.            |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the updating interval to Once.

<Program>

DSPL MODANAL

STRG\_MOD AVG

INTVAL\_MOD ONCE

 $INTVAL\_MOD?$ 

<Response>

# INTVAL\_OBW

#### ■ Function

Refresh Interval for Occupied Bandwidth

Sets the display updating interval when Storage Mode is set to Average at Occupied Bandwidth measurement.

## ■ Syntax

| Program Message   | Query Message | Response Message |
|-------------------|---------------|------------------|
| INTVAL_OBW intval | INTVAL_OBW?   | intval           |

#### ■ Parameter

intval

Updating interval

| Value | Updating interval                                                                                                                          | Initial value |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| EVERY | Updates the display after every one sweep. Calculates and displays the average value by the number of measurements repeated by that sweep. | *             |
| ONCE  | Updates the display once after completion of averaging. Calculates the average value by the times specified with Average Count.            |               |

## ■ Initialization command

PRE

INI

IP

\*RST

#### ■ Use example

Sets the updating interval to Once at Occupied Bandwidth measurement.

<Program>

DSPL OBW

INTVAL\_OBW ONCE

INTVAL\_OBW?

<Response>

# INTVAL\_RFPWR

#### **■** Function

Refresh Interval for RF Power

Sets the display updating interval when Storage Mode is set to Average at RF Power measurement.

## ■ Syntax

| Program Message     | Query Message | Response Message |
|---------------------|---------------|------------------|
| INTVAL_RFPWR intval | INTVAL_RFPWR? | intval           |

#### ■ Parameter

intval

Updating interval

| Value | Updating Interval                                                                                                                                      | Initial Value |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| EVERY | Updates the display after every one sweep. Calculates and displays the average value by the number of measurements repeated by that sweep.             | *             |
| ONCE  | Updates the display once after completion of averaging. Calculates and displays the average value by the number of times specified with Average Count. |               |

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the updating interval to Once.

<Program>

DSPL RFPWR

STRG\_RFPWR AVG

INTVAL\_RFPWR ONCE

INTVAL\_RFPWR?

<Response>

# INTVAL\_SRERR

#### ■ Function

Refresh Interval for Symbol Rate Error

Sets the display updating interval when Storage Mode is set to Average in Symbol Rate Error measurement.

## ■ Syntax

| Program Message     | Query Message | Response Message |
|---------------------|---------------|------------------|
| INTVAL_SRERR intval | INTVAL_SRERR? | Intval           |

### ■ Parameter

intval

Updating interval

| Value | Updating interval                                                                                                                          | Initial value |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| EVERY | Updates the display after every sweep. Calculates and displays the average value among the number of measurements up to the last sweep.    | *             |
| ONCE  | Updates the display once after completion of averaging. Calculates the average value among the number of times specified by Average Count. |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the updating interval in Symbol Rate Error measurement to Once.

<Program>

DSPL SRERR

STRG\_SRERR AVG

INTVAL\_SRERR ONCE

INTVAL\_SRERR?

<Response>

# INTVAL\_SMASK

## **■** Function

Refresh Interval for Spectrum Mask

Sets the display updating interval when Storage Mode is set to Average at Spectrum Mask measurement.

## ■ Syntax

| Program Message     | Query Message | Response Message |
|---------------------|---------------|------------------|
| INTVAL_SMASK intval | INTVAL_SMASK? | intval           |

## ■ Parameter

intval

Updating interval

| Value | Updating interval                                                                                                                          | Initial value |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| EVERY | Updates the display after every one sweep. Calculates and displays the average value by the number of measurements repeated by that sweep. | *             |
| ONCE  | Updates the display once after completion of averaging. Calculates the average value by the times specified with Average Count.            |               |

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the updating interval to Once at Spectrum Mask measurement.

<Program>

 $\operatorname{DSPL}\operatorname{SMASK}$ 

INTVAL\_ SMASK ONCE

INTVAL\_SMASK?

<Response>

# INTVAL\_SPU

#### **■** Function

Refresh Interval for Spurious Emission

Sets the display updating interval when storage mode is set to Average at spurious emission measurement.

## ■ Syntax

| Program Message   | Query Message | Response Message |
|-------------------|---------------|------------------|
| INTVAL_SPU intval | INTVAL_SPU?   | intval           |

## ■ Parameter

intval

**Updating Interval** 

| Value | Updating interval                                                                                                                      | Initial value |
|-------|----------------------------------------------------------------------------------------------------------------------------------------|---------------|
| EVERY | Updates the display after every sweep. Calculates and displays the average value by the number of measurements repeated by that sweep. | *             |
| ONCE  | Updates the display once after averaging. Calculates the average value by the times specified with Average Count.                      |               |

## ■ Initialization command

PRE

INI

IP

\*RST

## ■ Use example

Sets the updating interval in Once at spurious emission measurement.

<Program>

DSPL SPURIOUS, SWEEP INTVAL\_SPU ONCE INTVAL\_SPU?

<Response>

# ΙP

## ■ Function

## Preset

Initializes all the measurement control parameters to be enabled for initialization. This command functions the same as the PRE and INI commands.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| IP              |               |                  |

## ■ Use example

Initializes all the parameters to be enabled for initialization.

<Program>

ΙP

# **IPPLVL**

#### **■** Function

I Level (Peak to Peak)

Reads out the measured results of the Peak-to-Peak value for I signal in IQ Level measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | IPPLVL? unit  | pp               |

#### ■ Parameter

unit

Readout unit

| Value | Readout unit     |
|-------|------------------|
| None  | Current set unit |
| MV    | mV               |
| DBMV  | dBmV             |

#### pp

Peak-to-Peak value for I signal

| Resolution | Unit                                            |
|------------|-------------------------------------------------|
| 0.01       | Depends on the value specified by <i>unit</i> . |

## ■ Use example

Reads out the I Level (Peak to Peak) value

<Program>

TERM IQAC

MEAS IQLVL

IPPLVL? MV

<Response>

4.07

## **IQINZ**

#### **■** Function

IQ Impedance

Sets the input impedance of the IQ signal on the Setup Common Parameter screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| IQINZ $r$       | IQINZ?        | r                |

#### ■ Parameter

 $\boldsymbol{r}$ 

Impedance

| Value | Impedance            | Initial Value |
|-------|----------------------|---------------|
| 50    | $50 \Omega$          | *             |
| 1 M   | $1~\mathrm{M}\Omega$ |               |

#### ■ Restrictions

- The setting can be made only when the measurement screen is Setup Common Parameter (cf. DSPL).
- The setting can be made only when Terminal is IQ-AC, IQ-DC, or IQ-Balance (cf. TERM).

#### ■ Use example

Reads out I Level (Peak to Peak) value.

<Program>

DSPL SETCOM

TERM IQAC

IQINZ 50

IQINZ?

<Response>

50

## ■ Restrictions due to options and equipment

This command is enabled when option MS268\*A-17 or 18 I/Q input is installed.

# **IQLVL**

## **■** Function

IQ Level

Reads out the measured results of the RMS values and the peak-to-peak values for I and Q signals in IQ Level measurement.

## ■ Syntax

| Program Message | Query Message | Response Message     |
|-----------------|---------------|----------------------|
|                 | IQLVL? unit   | Irms, Qrms, Ipp, Qpp |

## ■ Parameter

unit

Readout unit

| Value | Readout unit                    |
|-------|---------------------------------|
| None  | Current set unit (cf. UNIT_IQL) |
| MV    | mV                              |
| DBMV  | dBmV                            |

## Irms

RMS value for I signal

| Resolution | Unit                                            |
|------------|-------------------------------------------------|
| 0.01       | Depends on the value specified by <i>unit</i> . |

## Qrms

RMS value for Q signal

| Resolution | Unit                                            |
|------------|-------------------------------------------------|
| 0.01       | Depends on the value specified by <i>unit</i> . |

## *Ipp*

Peak-to-Peak value for I signal

| Resolution | Unit                                            |
|------------|-------------------------------------------------|
| 0.01       | Depends on the value specified by <i>unit</i> . |

## Qpp

Peak-to-Peak value for Q signal

| Resolution | Unit                                            |
|------------|-------------------------------------------------|
| 0.01       | Depends on the value specified by <i>unit</i> . |

## Section 7 Detailed Explanations of Commands

## ■ Use example

Reads out the IQ Level value <Program> TERM IQAC MEAS IQLVL IQLVL? MV

<Response>
1.42,0.53,4.07,3.55

## **IQPHASE**

#### **■** Function

IQ Phase difference

Reads out the measured results of the phase difference between I/Q signals in IQ Level measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | IQPHASE?      | phase            |

#### ■ Parameter

phase

Phase difference between I/Q signals

| Resolution | Unit |
|------------|------|
| 0.01       | deg  |

## ■ Use example

Reads out the phase difference between I/Q signals.

<Program>

TERM IQAC

MEAS IQLVL

IQPHASE?

<Response>

99.97

# JUDGE\_BCH

#### ■ Function

Batch Measurement

Reads out pass/fail judgement results at batch measurement.

## ■ Syntax

| Program Message | Query Message   | Response Message |
|-----------------|-----------------|------------------|
|                 | JUDGE_BCH? item | pass/fail        |
|                 | JUDGE_BCH? n    | a1, a2, am       |

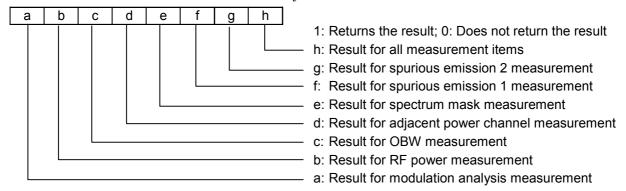
## ■ Parameter

item

Judgement item

| item                                                           | Judgement Item                                                    |  |
|----------------------------------------------------------------|-------------------------------------------------------------------|--|
| MOD                                                            | Pass/fail judgement result for modulation analysis measurement    |  |
| PWR                                                            | Pass/fail judgement result for RF power measurement               |  |
| OBW                                                            | Pass/fail judgement result for occupied bandwidth measurement     |  |
| ACP                                                            | Pass/fail judgement result for adjacent channel power measurement |  |
| MSK                                                            | Pass/fail judgement result for spectrum mask measurement          |  |
| SPR1                                                           | Pass/fail judgement result for spurious emission 1 measurement    |  |
| SPR2                                                           | Pass/fail judgement result for spurious emission 2 measurement    |  |
| TTL Pass/fail judgement result for all measurement items above |                                                                   |  |

## pass/fail

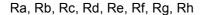

## Judgement item

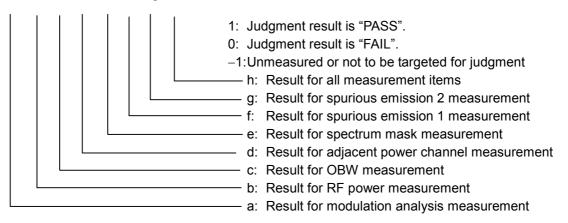
| pass/fail | Judgement Result                               |
|-----------|------------------------------------------------|
| 1         | Pass/fail judgement result is "PASS".          |
| 0         | Pass/fail judgement result is "FAIL".          |
| -1        | Unmeasured or not to be targeted for judgement |

n

Judgement item selection

Hexadecimal value converted from 8-bit binary data





e.g. To obtain the pass/fail judgement results for modulation analysis and RF power measurements: C0 (11000000)

a1, a2, ..., am

Judgement results

Outputs pass/fail judgement results for the selected items delimiting by a comma (,).





| am | Judgement Result                               |  |
|----|------------------------------------------------|--|
| 1  | Pass/fail judgement result is "PASS".          |  |
| 0  | Pass/fail judgement result is "FAIL".          |  |
| -1 | Unmeasured or not to be targeted for judgement |  |

e.g. The pass/fail judgement results for modulation analysis and RF power measurements: 1,0

## ■ Use example

Reads out the pass/fail judgement result of the modulation analysis measurement at batch measurement.

<Program>
DSPL BATCH
JUDGE\_BCH? MOD

<Response>

1

# JUDGUNIT\_SPTBL

#### ■ Function

Judgement for Spurious Emission

Sets whether results judgement is performed by absolute or relative value in spot measurement at spurious emission measurement.

#### ■ Syntax

| Program Message  | Query Message     | Response Message |
|------------------|-------------------|------------------|
| JUDGUNIT_SPTBL a | JUDGUNIT_SPTBL? a | a                |

#### ■ Parameter

а

Judgement Method

| Value  | Description                                                           | Initial Value |
|--------|-----------------------------------------------------------------------|---------------|
| ABS    | Use absolute value (dBm, xW/MHz).                                     | *             |
| ON     | ON Ose absolute value (dbiii, xw/MHz).                                |               |
| REL    | Use relative value (dB).                                              |               |
| OFF    | OFF Use relative value (db).                                          |               |
| RELABS | Perform judgement at severe condition among absolute, relative value. |               |

#### ■ Restrictions

• Value is absolute if xW/MHz is set as unit.

#### ■ Initialization command

PRE

INI

IP

\*RST

## ■ Use example

Sets for judgement results by absolute value in spot measurement at spurious emission measurement.

<Program>

DSPL SETTBL\_SPU, SPOT JUDGUNIT\_SPTBL ABS JUDGUNIT\_SPTBL?

<Response>

ABS

# JUDGUNIT\_SPU

#### ■ Function

Judgement Unit for Spurious Emission

Sets results judgement units in spot measurement at spurious emission measurement.

## ■ Syntax

| Program Message   | Query Message      | Response Message |
|-------------------|--------------------|------------------|
| JUDGUNIT_SPU unit | JUDGUNIT_SPU? unit | unit             |

#### ■ Parameter

unit

Unit

| Unit  | Description                                                               |  |
|-------|---------------------------------------------------------------------------|--|
| DB    | Use dBm for absolute value judgement and dB for relative value judgement. |  |
| W_MHZ | Use xW/MHz for absolute value judgement.                                  |  |

#### ■ Restrictions

• Relative value judgement is automatically switched to magnitude judgement if xW/MHz is set.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets xW/MHz as a results judgement unit in spot measurement at spurious emission measurement.

<Program>

DSPL SETTBL\_SPU,SPOT JUDGUNIT\_SPU W\_MHZ JUDGUNIT\_SPU?

<Response>

 $W_MHZ$ 

# JUDGUNIT\_SWTBL

#### ■ Function

Judgement Unit for Spurious Emission

Sets whether to use absolute value or relative value for pass/fail judgement in Search/Sweep measurement on the Spurious Emission screen.

#### ■ Syntax

| Program Message  | Query Message   | Response Message |
|------------------|-----------------|------------------|
| JUDGUNIT_SWTBL a | JUDGUNIT_SWTBL? | a                |

#### ■ Parameter

а

#### ABS/REL

| а      | Description                                                                                   | Initial Value |
|--------|-----------------------------------------------------------------------------------------------|---------------|
| ABS    | ABS Use absolute value (dBm, xW/MHz, xW).                                                     |               |
| ON     | Ose absolute value (ubili, xw/wi11z, xw).                                                     | *             |
| REL    | REL Use relative value (dB).                                                                  |               |
| OFF    | Ose relative value (ub).                                                                      |               |
| RELABS | Perform judgement under whichever condition is more severe: absolute value or relative value. |               |

#### ■ Restrictions

• Relative value judgement is disabled if xW/MHz or xW is set.

#### ■ Initialization command

PRE

INI

IP

\*RST

### ■ Use example

Performs judgement using absolute value.

<Program>

DSPL SETTBL\_SPU,SWEEP JUDGUNIT\_SWTBL ABS JUDGUNIT\_SWTBL?

<Response>

ABS

# JUDGUNIT\_SWU

#### ■ Function

Judgement Unit for Spurious Emission

Sets pass/fail judgement units in Search/Sweep measurement on the Spurious Emission screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| JUDGUNIT_SWU a  | JUDGUNIT_SWU? | a                |

#### ■ Parameter

а

#### Unit

| Unit  | Description                                                               |
|-------|---------------------------------------------------------------------------|
| DB    | Use dBm for absolute value judgement and dB for relative value judgement. |
| W_MHZ | Use xW/MHz for absolute value judgement.                                  |
| W     | Use xW for absolute value judgement.                                      |

#### ■ Restrictions

• Relative value judgement is disabled if xW/MHz or xW is set.

#### ■ Initialization command

PRE

INI

IP

\*RST

### ■ Use example

Sets xW/MHz as the judgement unit. <Program>
DSPL SETTBL\_SPU,SWEEP
JUDGUNIT\_SWU W\_MHZ
JUDGUNIT\_SWU?

<Response>

 $W_MHZ$ 

# LMTACP\_BCH

#### **■** Function

Batch Measurement

Sets the judgement value for adjacent channel power at batch measurement.

## ■ Syntax

| Program Message       | Query Message    | Response Message |  |
|-----------------------|------------------|------------------|--|
| LMTACP_BCH b, c, a    | LMTACP_BCH? b, c | а                |  |
| LMTACP_BCH b, c, NULL | LMTACP_BCH? b, c | NULL             |  |

#### ■ Parameter

b

Offset Frequency Type

| b   | Offset Frequency Type                |  |
|-----|--------------------------------------|--|
| 20M | 20 MHz offset adjacent channel power |  |
| 40M | 40 MHz offset adjacent channel power |  |

c

## Item Type

| С   | Type            |
|-----|-----------------|
| VAL | Threshold value |
| UNT | Unit            |

NULL cannot be specified when c is set to UNT.

a

Adjacent Channel Power Range

| Unit | Range            | Resolution |
|------|------------------|------------|
| mW   | 0.001 to 999.999 | 0.001      |
| dB   | -99.99 to 0.00   | 0.01       |
| dBm  | -99.99 to 40.00  | 0.01       |

#### Initial Value for Adjacent Channel Power

| b   | Unit | Initial Value |  |  |
|-----|------|---------------|--|--|
|     | mW   | 0.500         |  |  |
| 20M | dB   | -25.00        |  |  |
|     | dBm  | NULL          |  |  |
|     | mW   | 0.016         |  |  |
| 40M | dB   | -40.00        |  |  |
|     | dBm  | NULL          |  |  |

#### Unit for Adjacent Channel Power

| а   | Unit | Initial Value |
|-----|------|---------------|
| DB  | dB   | *             |
| DBM | dBm  |               |
| MW  | mW   |               |

NULL indicates "not to be targeted for judgement".

#### ■ Restrictions

• This command is valid only when the system is IEEE802.11a, HiperLAN2 or HiSWANa.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the judgement value for 20 MHz offset of adjacent channel power to  $-50~\mathrm{dBm}$  at batch measurement.

<Program>

DSPL SETTBL\_BCH

LMTACP\_BCH 20M, UNT, DBM

LMTACP\_BCH 20M, VAL, -50

LMTACP\_BCH? 20M, VAL

<Response>

-50.00

# LMTEVM\_BCH

## **■** Function

Batch Measurement

Sets the judgement value for EVM at batch measurement.

## ■ Syntax

| Program Message    | Query Message | Response Message |
|--------------------|---------------|------------------|
| LMTEVM_BCH b, a    | LMTEVM_BCH? b | а                |
| LMTEVM_BCH b, NULL | LMTEVM_BCH? b | NULL             |

#### ■ Parameter

b

#### Item

| b   | ltem              |  |
|-----|-------------------|--|
| RMS | rms value         |  |
| PEK | peal value        |  |
| UNT | Unit of rms value |  |

NULL cannot be specified when b is set to UNT.

а

Judgement Value for rms Value

|      |                  |            | Initial     | value                  |
|------|------------------|------------|-------------|------------------------|
| Unit | Range            | Resolution | IEEE802.11b | Other than IEEE802.11b |
| %    | 0.30 to 99.99    | 0.01       | NULL        | 15.00                  |
| dB   | -50.00 to $0.00$ | 0.01       |             | -16.00                 |

## Judgement Value for peak Value

|               |            |         | Initial     | value                  |
|---------------|------------|---------|-------------|------------------------|
| Range         | Resolution | on Unit | IEEE802.11b | Other than IEEE802.11b |
| 0.30 to 99.99 | 0.01       | %       | 35.00       | NULL                   |

### Unit of rms Value

| а   | Unit | Initial value |
|-----|------|---------------|
| DB  | dB   | *             |
| PER | %    |               |

NULL indicates "not to be targeted for judgement" irrespective of whether b is RMS, PEK or UNT.

#### ■ Initialization command

PRE

INI

IP

\*RST

## ■ Use example

Sets the judgement value for EVM to 20% (rms) at batch measurement.

<Program>

DSPL SETTBL\_BCH LMTEVT\_BCH UNT, PER LMTEVT\_BCH RMS, 20 LMTEVT\_BCH? RMS

<Response>

20

# LMTFLT\_BCH

#### **■** Function

Batch Measurement

Sets the judgement value for flatness at batch measurement.

## ■ Syntax

| Program Message    | Query Message | Response Message |
|--------------------|---------------|------------------|
| LMTFLT_BCH b, a    | LMTFLT_BCH? b | a                |
| LMTFLT_BCH b, NULL | LMTFLT_BCH? b | NULL             |

#### ■ Parameter

b

#### Item

| b      | Item                          |  |
|--------|-------------------------------|--|
| INLOW  | Lower limit value for inside  |  |
| INUP   | Upper limit value for inside  |  |
| OUTLOW | Lower limit value for outside |  |
| OUTUP  | Upper limit value for outside |  |

а

## Judgement Value for Flatness

| b      | Range                               | Unit | Resolution | Initial value |
|--------|-------------------------------------|------|------------|---------------|
| INLOW  | -20.00 to inside upper limit value  | dB   | 0.01       | -2.00         |
| INUP   | Inside lower limit value to +20.00  | dB   | 0.01       | +2.00         |
| OUTLOW | -20.00 to outside upper limit value | dB   | 0.01       | -4.00         |
| OUTUP  | outside lower limit value to +20.00 | dB   | 0.01       | +2.00         |

NULL indicates "not to be targeted for judgement".

#### ■ Restrictions

• This command is valid only when the system is IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) or IEEE802.11g (DSSS-OFDM), the signal status is Burst and input is RF.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the judgement value for inside lower limit of flatness to  $\,-0.5~\mathrm{dB}$  at batch measurement.

<Program>

DSPL SETTBL\_BCH LMTFLT\_BCH INLOW, -0.5 LMTFLT\_BCH? INLOW

<Response>

-0.5

# LMTFRERR\_BCH

#### **■** Function

Batch Measurement

Sets the judgement value for frequency errors at batch measurement.

## ■ Syntax

| Program Message      | Query Message   | Response Message |
|----------------------|-----------------|------------------|
| LMTFRERR_BCH b, a    | LMTFRERR_BCH? b | а                |
| LMTFRERR_BCH b, NULL | LMTFRERR_BCH? b | NULL             |

#### ■ Parameter

b

#### Item

| b   | Item            |
|-----|-----------------|
| ERR | Frequency error |
| UNT | Unit            |

NULL cannot be specified when b is set to UNT.

а

Judgement Value for Frequency Error (when b is ERR)

| Unit | Range           | Resolution | Initial value |
|------|-----------------|------------|---------------|
| Hz   | 0.0 to 200000.0 | 0.1        | 120000.0      |
| ppm  | 0.000 to 99.999 | 0.001      | 20.000        |

#### Unit (when b is UNT)

| а   | Unit | Initial value |
|-----|------|---------------|
| PPM | ppm  | *             |
| HZ  | Hz   |               |

NULL indicates "not to be targeted for judgement" irrespective of whether b is ERR or UNT.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the judgement value for frequency errors to 10 kHz at batch measurement.

<Program>

DSPL SETTBL\_BCH LMTFRERR\_BCH UNT, HZ LMTFRERR\_BCH ERR, 10000 LMTFRERR\_BCH? ERR

<Response> 10000.0

## LMTLEAK\_BCH

#### **■** Function

Batch Measurement

Sets the judgement value for carrier leak at batch measurement.

## ■ Syntax

| Program Message  | Query Message | Response Message |
|------------------|---------------|------------------|
| LMTLEAK_BCH a    | LMTLEAK_BCH?  | а                |
| LMTLEAK_BCH NULL | LMTLEAK_BCH?  | NULL             |

#### ■ Parameter

я

Judgement Value for Carrier Leak

| Range           | Resolution | Unit | Initial Value |
|-----------------|------------|------|---------------|
| -50.00 to 50.00 | 0.01       | dB   | -15.00        |

NULL indicates "not to be targeted for judgement".

#### ■ Restrictions

• This command is valid only when the system is IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) or IEEE802.11g (DSSS-OFDM).

#### ■ Initialization command

PRE

INI

ΙP

 $*{\rm RST}$ 

#### ■ Use example

Sets the judgement value for carrier leak to 40 dB at batch measurement.

<Program>

DSPL SETTBL\_BCH

 $LMTLEAK_BCH 40$ 

LMTLEAK\_BCH?

<Response>

40

## LMTMGERR\_BCH

#### ■ Function

Batch Measurement

Sets the judgement value for magnitude errors at batch measurement.

#### ■ Syntax

| Program Message   | Query Message | Response Message |
|-------------------|---------------|------------------|
| LMTMGERR_BCH a    | LMTMGERR_BCH? | а                |
| LMTMGERR_BCH NULL | LMTMGERR_BCH? | NULL             |

#### ■ Parameter

a

Judgement Value for Magnitude Error

| Range         | Unit | Resolution | Initial Value |
|---------------|------|------------|---------------|
| 0.01 to 99.99 | %    | 0.01       | NULL          |

NULL indicates "not to be targeted for judgement".

#### ■ Restrictions

• This command is valid when the system is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK).

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the judgement value for magnitude errors to 10% at batch measurement.

<Program>

 $DSPL\ SETTBL\_BCH$ 

LMTMGERR\_BCH 10

LMTMGERR\_BCH?

<Response>

10

# LMTOBW\_BCH

#### **■** Function

Batch Measurement

Sets the judgement value for occupied bandwidth at batch measurement.

## ■ Syntax

| Program Message    | Query Message | Response Message |
|--------------------|---------------|------------------|
| LMTOBW_BCH b, a    | LMTOBW_BCH? b | а                |
| LMTOBW_BCH b, NULL | LMTOBW_BCH? b | NULL             |

#### ■ Parameter

а

Judgement Value for Occupied Bandwidth

| b  | Range         | Resolution | Unit  |
|----|---------------|------------|-------|
| 99 | 0.00 to 40.00 | 0.01       | m MHz |
| 90 | 0.00 to 40.00 | 0.01       | m MHz |

b

#### Item

| b  | Item                                |  |
|----|-------------------------------------|--|
| 99 | 99% bandwidth                       |  |
| 90 | 90% bandwidth (spreading bandwidth) |  |

### Initial Value for Occupied Bandwidth

| b  | System                                     | Measurement Standard     | Initial Value |
|----|--------------------------------------------|--------------------------|---------------|
| 00 | IEEE802.11b,<br>IEEE802.11g (ERP-DSSS/CCK) |                          | 26.00         |
| 99 | Other than the above                       | TELEC standard (Indoor)  | 18.00         |
|    | Other than the above                       | TELEC standard (Outdoor) | 19.70         |
| 90 | IEEE802.11b,<br>IEEE802.11g (ERP-DSSS/CCK) |                          | 0.50          |

NULL indicates "not to be targeted for judgement".

#### ■ Restrictions

• Setting b to 90 is possible when the system is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK).

#### ■ Initialization command

PRE

INI

IP

\*RST

## ■ Use example

Sets the judgement value for occupied bandwidth (99% bandwidth) to 17.5 MHz at batch measurement.

<Program>

DSPL SETTBL\_BCH LMTOBW\_BCH 99, 17.5 LMTOBW\_BCH? 99

<Response>

17.5

# LMTOFPWR\_BCH

#### **■** Function

Batch Measurement

Sets the judgement value for Carrier Off Power at batch measurement.

## ■ Syntax

| Program Message      | Query Message   | Response Message |
|----------------------|-----------------|------------------|
| LMTOFPWR_BCH b, a    | LMTOFPWR_BCH? b | а                |
| LMTOFPWR_BCH b, NULL | LMTOFPWR_BCH? b | NULL             |

#### ■ Parameter

a

Judgement Value for Carrier Off Power

| Unit | Range            | Resolution | Initial value |
|------|------------------|------------|---------------|
| dBm  | -99.99 to 40.00  | 0.01       | NULL          |
| mW   | 0.001 to 999.999 | 0.001      | NULL          |

b

Item

| b   | Item              |  |
|-----|-------------------|--|
| PWR | Carrier Off Power |  |
| UNT | Unit              |  |

NULL cannot be specified when be is set to UNT.

#### Unit of Carrier Off Power

| а   | Unit | Initial value |
|-----|------|---------------|
| MW  | mW   | *             |
| DBM | dBm  |               |

NULL indicates "not to be targeted for judgement".

## ■ Restrictions

• This command is valid only when the signal status is Burst.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the judgement value for Carrier Off Power to  $\,-40\,\mathrm{dBm}$  at batch measurement.

<Program>

DSPL SETTBL\_BCH LMTOFPWR\_BCH UNT, DBM LMTOFPWR\_BCH PWR, -40 LMTOFPWR\_BCH? PWR

<Response>

-40.00

# LMTORG\_BCH

#### **■** Function

Batch Measurement

Sets the judgement value for origin offset at batch measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| LMTORG_BCH a    | LMTORG_BCH?   | а                |
| LMTORG_BCH NULL | LMTORG_BCH?   | NULL             |

#### ■ Parameter

a

Judgement Value for Origin Offset

| Range          | Unit | Resolution | Initial Value |
|----------------|------|------------|---------------|
| -99.99 to 0.00 | dB   | 0.01       | NULL          |

NULL indicates "not to be targeted for judgement".

#### ■ Restrictions

• This command is valid when the system is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK).

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the judgement value for origin offset to -40 dB at batch measurement.

<Program>

 $DSPL\ SETTBL\_BCH$ 

 $LMTORG_BCH - 40$ 

LMTORG\_BCH?

<Response>

-40

# LMTPHERR\_BCH

#### **■** Function

Batch Measurement

Sets the judgement value for phase errors at batch measurement.

## ■ Syntax

| Program Message   | Query Message | Response Message |
|-------------------|---------------|------------------|
| LMTPHERR_BCH a    | LMTPHERR_BCH? | a                |
| LMTPHERR_BCH NULL | LMTPHERR_BCH? | NULL             |

#### ■ Parameter

я

Judgement Value for Phase Error

| Range          | Unit | Resolution | Initial Value |
|----------------|------|------------|---------------|
| 0.01 to 180.00 | deg  | 0.01       | NULL          |

NULL indicates "not to be targeted for judgement".

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the judgement value for phase errors to 20 deg at batch measurement.

<Program>

 $DSPL\ SETTBL\_BCH$ 

LMTPHERR\_BCH 20

LMTPHERR\_BCH?

<Response>

20

# LMTPWR\_BCH

#### **■** Function

Batch Measurement

Sets the judgement value for TX Power at batch measurement.

## ■ Syntax

| Program Message    | Query Message | Response Message |
|--------------------|---------------|------------------|
| LMTPWR_BCH b, a    | LMTPWR_BCH? b | а                |
| LMTPWR_BCH b, NULL | LMTPWR_BCH? b | NULL             |

#### ■ Parameter

a

Judgement Value for TX Power

| Unit | b   | Range                       | Resolution | Initial value |
|------|-----|-----------------------------|------------|---------------|
|      | UP  | Lower limit value to        | 0.001      | 300.000       |
| MW   |     | 999.999                     |            |               |
|      | LOW | 0.001 to upper limit value  | 0.001      | 50.000        |
| DD   | UP  | Lower limit value to 40.00  | 0.01       | 24.77         |
| DBm  | LOW | -60.00 to upper limit value | 0.01       | 17.00         |

b

Item

| b   | ltem              |
|-----|-------------------|
| UP  | Upper limit value |
| LOW | Lower limit value |
| UNT | Unit              |

NULL cannot be specified when b is set to UNT.

## Unit

| а   | Unit | Initial value |
|-----|------|---------------|
| MW  | mW   | *             |
| DBM | dBm  |               |

NULL indicates "not to be targeted for judgement" irrespective of whether b is UP, LOW or UNT.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the judgement value for upper limit of TX Power to  $20\ mW$  at batch measurement.

<Program>

DSPL SETTBL\_BCH LMTPWR\_BCH UP, 20 LMTPWR\_BCH? UP

<Response> 20.000

## LMTRAMP\_BCH

#### ■ Function

Batch Measurement

Sets the judgement value for ramp time at batch measurement.

## ■ Syntax

| Program Message  | Query Message | Response Message |
|------------------|---------------|------------------|
| LMTRAMP_BCH a    | LMTRAMP_BCH?  | a                |
| LMTRAMP_BCH NULL | LMTRAMP_BCH?  | NULL             |

#### ■ Parameter

я

Judgement Value for Ramp Time

| Range         | Unit | Resolution | Initial Value |
|---------------|------|------------|---------------|
| 0.00 to 20.00 | us   | 0.01       | 2.00          |

NULL indicates "not to be targeted for judgement".

#### ■ Restrictions

• This command is valid only when the system is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) and the signal status is Burst.

#### ■ Initialization command

PRE

INI

ΙP

 $*{\rm RST}$ 

#### ■ Use example

Sets the judgement value for ramp time to 2 us at batch measurement.

<Program>

 $DSPL\ SETTBL\_BCH$ 

 ${\rm LMTRAMP\_BCH~2}$ 

LMTRAMP\_BCH?

<Response>

2.00

# LMTRATIO\_BCH

#### **■** Function

Batch Measurement

Sets the judgement value for On/Off ratio at batch measurement.

## ■ Syntax

| Program Message   | Query Message | Response Message |
|-------------------|---------------|------------------|
| LMTRATIO_BCH a    | LMTRATIO_BCH? | а                |
| LMTRATIO_BCH NULL | LMTRATIO_BCH? | NULL             |

#### ■ Parameter

a

Judgement Value for On/Off Ratio

| Range         | Unit | Resolution | Initial Value |
|---------------|------|------------|---------------|
| 0.00 to 99.99 | dB   | 0.01       | NULL          |

NULL indicates "not to be targeted for judgement".

## ■ Restrictions

• This command is valid only when the signal status is Burst.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the judgement value for On/Off ratio to 50 dB at batch measurement.

<Program>

DSPL SETTBL\_BCH

LMTRATIO BCH 50

LMTRATIO\_BCH?

<Response>

50.00

## **LVLCAL**

#### ■ Function

Level Calibration

Performs level calibration using the built-in calibration signal of the measuring instrument as the absolute-value reference.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| LVLCAL          |               |                  |

#### ■ Restrictions

- This command cannot be executed when the measurement screen is Setup Common Parameter (cf. DSPL)
- This command is enabled only when Terminal is RF (cf. TERM).

## ■ Use example

Executes level calibration.

<Program>

DSPL RFPWR

LVLCAL

#### ■ Note

• The instrument will be in a non-calibrated status if the power is turned on or initialization process is performed.

## **MAGTDERR**

#### **■** Function

Magnitude Error

Outputs a Magnitude Error at Modulation Analysis measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | MAGTDERR?     | err              |

#### ■ Parameter

err

Magnitude Error

| Resolution | Unit |
|------------|------|
| 0.01       | %    |

#### ■ Restrictions

• This command is enabled when Target System is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) (*cf.* TGTSY).

#### ■ Use example

Reads out Magnitude Error.

<Program>

TGTSY 11B

MEAS MODANAL

MAGTDERR?

<Response>

12.34

## **MAXPWR**

#### ■ Function

Maximum Power

Outputs the ratio between the maximum momentary and reference of power in one slot at RF Power measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | MAXPWR? unit  | maxpwr           |

#### ■ Parameter

unit

Output unit

| Value | Output Unit | Output Description |
|-------|-------------|--------------------|
| DBM   | dBm         | Maximum power      |
| WATT  | W           | Maximum power      |
| DB    | dB          | Ratio to reference |
| PC    | %           | Ratio to reference |

#### maxpwr

Maximum power

| Output Unit | Resolution              |
|-------------|-------------------------|
| dBm         | 0.01                    |
| W           | Four significant digits |
| dB          | 0.01                    |
| %           | 0.01                    |

## ■ Use example

Reads out the Maximum Power dBm value of.

<Program>

MEAS RFPWR

MAXPWR? DBM

<Response>

23.45

## **MEAS**

#### ■ Function

Sets the measurement screen and measurement method, and starts measurement.

When the previous measurement is not a continuous measurement, a Single measurement is executed. On the other hand, when the previous measurement is a continuous one, a continuous measurement is executed.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MEAS meas, mode | MEAS?         | meas, mode       |
| MEAS meas       | MEAS?         | meas             |

#### ■ Parameter

*meas:* measurement screen name; *mode:* measurement method/template type

| Value of meas | Measurement screen name | Value of mode          | Measurement method/<br>template type | Initial<br>value | Input terminal (->TERM) |
|---------------|-------------------------|------------------------|--------------------------------------|------------------|-------------------------|
| SETCOM        | Setup Common Parameter  | None                   |                                      | *                |                         |
| MODANAL       | Modulation Analysis     | None                   |                                      |                  | DD                      |
| RFPWR         | RF Power                | None                   |                                      |                  | RF,                     |
| CCERR         | Chip Clock Error        | None                   |                                      |                  | IQ-DC<br>IQ-AC          |
| SRERR         | Symbol Rate Error       | None                   |                                      |                  | IQ-AC<br>IQ-Balance     |
| CCDF          | CCDF                    | CCDF                   | CCDF                                 |                  | To Dalance              |
| CCDF          | CCDF                    | APD                    | APD                                  |                  |                         |
| OBW           | Occupied Bandwidth      | None                   |                                      |                  |                         |
| ADJ           | Adjacent Channel Power  | SPECT1                 | Spectrum (All)                       |                  |                         |
| ADJ           | Adjacent Channel Power  | SPECT2                 | Spectrum (Separate)                  |                  |                         |
| PWRMTR        | Power Meter             | None                   |                                      |                  |                         |
|               |                         | SMASK                  | Mask                                 |                  |                         |
| SMASK         | Spectrum Mask           | SET-<br>TEMP_SM<br>ASK | Template                             |                  | RF                      |
|               |                         | SPOT                   | Spot                                 |                  |                         |
| SPURIOUS      | Spurious                | SEARCH                 | Search                               |                  |                         |
|               |                         |                        | Sweep                                |                  |                         |
| SETTBL_       | Setup Table of Spurious | SPOT                   | Spot                                 |                  |                         |
| SPU           | Setup Table of Spurious | SWEEP                  | Sweep                                |                  |                         |
| BATCH         | Batch                   | None                   |                                      |                  | RF,                     |
| SETTBL_       |                         |                        |                                      |                  | IQ-DC                   |
| BCH           | Setup Measure Table     | None                   |                                      |                  | IQ-AC                   |
|               |                         |                        |                                      |                  | IQ-Balance              |
|               |                         |                        |                                      |                  | IQ-DC                   |
| IQLVL         | IQ Level                | None                   |                                      |                  | IQ-AC                   |
|               |                         |                        |                                      |                  | IQ-Balance              |

#### ■ Restrictions

- Transition to the Chip Clock Error screen and measurement on the Chip Clock Error screen are enabled only when Target System is IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK).
- Transition to the Symbol Rate Error screen and measurement on the Symbol Rate Error screen are enabled only when Target System is IEEE802.11a, IEEE802.11g (ERP-OFDM) or IEEE802.11g (DSSS-OFDM).

#### ■ Initialization command

PRE

INI

IP

\*RST

#### ■ Use example

[1] Moves the screen to the Modulation Analysis screen to perform a measurement.

<Program>

MEAS MODANAL

MEAS?

<Response>

**MODANAL** 

[2] Moves the screen to APD measurement on the CCDF screen.

<Program>

MEAS CCDF,APD

MEAS?

<Response>

CCDF,APD

## **MEAS\_BCH**

#### **■** Function

Batch Measurement

Switches On/Off of each measurement item for batch measurement.

## ■ Syntax

| Program Message       | Query Message  | Response Message |
|-----------------------|----------------|------------------|
| MEAS_BCH item, on/off | MEAS_BCH? item | on/off           |

#### ■ Parameter

item

Measurement Item

| mode | Measurement Item                   | Initial value |
|------|------------------------------------|---------------|
| MOD  | Modulation analysis measurement    | 1             |
| PWR  | RF power measurement               | 0             |
| OBW  | OBW measurement                    | 0             |
| ACP  | Adjacent channel power measurement | 0             |
| MSK  | Spectrum mask measurement          | 0             |
| SPR  | Spurious emission measurement      | 0             |
| FLT  | Flatness measurement               | 0             |

#### on/off

#### Measurement Execution

| on/off | Measurement Execution        |
|--------|------------------------------|
| 1      | Executes measurement         |
| 0      | Does not execute measurement |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Executes occupied frequency bandwidth measurement at batch measurement.

<Program>

DSPL BATCH

MEAS\_BCH OBW, 1

MEAS\_BCH? OBW

<Response>

1

## **MEASOBJ**

#### **■** Function

Measuring Object

Sets the type of signal for the measurement target (Measuring Object) on the Setup Common Parameter screen.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MEASOBJ object  | MEASOBJ?      | object           |

#### ■ Parameter

object

Measuring Object

| Value     | Measuring Object          | Initial value | Initial value |
|-----------|---------------------------|---------------|---------------|
|           |                           | (Except       | (HiSWANa)     |
|           |                           | HiSWANa)      |               |
| BURST     | Burst signal              | *             |               |
| BC_BURST  | Broadcast Burst signal    |               |               |
| DL_BURST  | Downlink Burst signal     |               |               |
| UL_BURST  | Uplink Burst signal       |               |               |
| ALL_BURST | Burst signal(for HiSWANa) |               | *             |
| CONT      | Continuous signal         |               |               |

#### ■ Restrictions

- The measurement screen displayed must be set to the Setup Common Parameter screen (cf. DSPL).
- Broadcast Burst signal and Downlink Burst signal and Uplink Burst signal and Burst signal (for HiSWANa) are enabled only when Target System is HiSWANa.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the Measuring Object to Burst signal.

<Program>

MEASOBJ BURST

MEASOBJ?

<Response>

BURST

## MKL\_ADJ

#### **■** Function

Marker Level for Adjacent Channel Power

Reads out the level at the marker position during Adjacent Channel Power measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | MKL_ADJ? unit | level            |

#### ■ Parameter

unit

#### Unit

| Value | Offset Frequency   |
|-------|--------------------|
| None  | Set value for unit |
| DB    | dB                 |
| DBM   | dBm                |
| WATT  | W                  |

#### level

## Level

| Resolution                        | Unit |
|-----------------------------------|------|
| 0.01                              | dB   |
| 0.01                              | dBm  |
| Four sig-<br>nificant dig-<br>its | W    |

#### ■ Restrictions

• "\*\*\*" is displayed when Marker is not displayed.

#### ■ Use example

Reads out the level at the marker position during Adjacent Channel Power measurement.

<Program>

DSPLADJ

 $MKR\_ADJ$  NRM

**SWP** 

MKL\_ADJ?

<Response>

-45.18

# MKL\_CCDF

## **■** Function

Marker Value for CCDF

Outputs power deviation and probability in the marker position on the CCDF screen.

# ■ Syntax

| Program Message | Query Message        | Response Message |
|-----------------|----------------------|------------------|
|                 | MKL_CCDF? wave, mode | result           |

#### ■ Parameter

wave

Output waveform

| Value | Output waveform                                                                    |
|-------|------------------------------------------------------------------------------------|
| 0     | Outputs the value of measurement waveform                                          |
| 1     | Outputs the value of the saved waveform. Outputs 0 when the waveform is not saved. |
| All   | Outputs the measurement waveform and the saved waveform in order.                  |

# mode

# Output format

| Value  | Output Format                                        |
|--------|------------------------------------------------------|
| PROB   | Outputs the value of probability (X-coordinate).     |
| DSTRBT | Outputs the value of power deviation (Y-coordinate). |

# result

# Output format

| Resolution | Unit | Output format   |
|------------|------|-----------------|
| 0.1        | dB   | Power deviation |
| 0.0001     | %    | Probability     |

## ■ Use example

Reads out the measurement results of probability in the marker position of the measurement waveform.

<Program>

DSPL CCDF,CCDF

SWP

MKL\_CCDF? 0,DSTRBT

<Response>

0.5012

# MKL\_MOD

#### ■ Function

Marker Level for Modulation Analysis

Outputs the measured results at marker position when Trance Format is set to Constellation, Eye Diagram, EVM vs. Symbol, Phase Error vs. Symbol, EVM vs. Sub-carrier, Spectrum Flatness at Modulation Analysis measurement.

# ■ Syntax

| Program Message | Query Message  | Response Message |
|-----------------|----------------|------------------|
|                 | MKL_MOD? phase | result           |

## ■ Parameter

phase

Signal type

| Value | Signal Type | Trace Format (cf. TRFORM)                                                      |
|-------|-------------|--------------------------------------------------------------------------------|
| None  | None        | EVM vs. Symbol, Phase Error vs. Symbol, EVM vs. Sub-carrier, Spectrum Flatness |
| I     | I signal    | Constellation, Eye Diagram                                                     |
| Q     | Q signal    | Constellation, Eye Diagram                                                     |

# level

#### Marker Level

| Resolution | Unit | Trace Format (cf. TRFORM)           |
|------------|------|-------------------------------------|
| 0.001      | None | Constellation, Eye Diagram          |
| 0.01       | %    | EVM vs. Symbol, EVM vs. Sub-carrier |
| 0.01       | deg  | Phase Error vs. Symbol              |
| 0.01       | dB   | Spectrum Flatness                   |

#### ■ Restrictions

- "\*\*\*" is read out when Trace Format is set to No Trace (cf. TRFORM).
- "\*\*\*" is read out when Marker is set to Off (cf. MKR\_MOD).

## ■ Use example

Reads out the value at Symbol point 768 on I signal in the Constellation mode.

<Program>

DSPL MODANAL

TRFORM CONSTEL

MKR\_MOD NRM

**SWP** 

MKP\_MOD SYM,768

MKL\_MOD? I

<Response>

-0.289

# MKL\_RFPWR

## **■** Function

Marker Level for RF Power

Outputs the measured results at RF Power measurement marker position.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | MKL_RFPWR?    | result           |

## ■ Parameter

result

Marker Level

| Resolution | Unit                                              |
|------------|---------------------------------------------------|
| 0.01       | Unit selected in Unit ( <i>cf.</i><br>UNIT_RFPWR) |

# ■ Use example

Reads out dBm value of Power at 2.0 µsec.

<Program>

DSPL RFPWR

UNIT\_RFPWR DBM

SWP

 $MKR\_RFPWR\ NRM$ 

MKP\_RFPWR 2.0

MKL\_RFPWR?

<Response>

1.23

# MKL\_SMASK

# **■** Function

Marker Level for Spectrum Mask

Reads the marker value at Spectrum Mask measurement.

# ■ Syntax

| Program Message | Query Message   | Response Message |
|-----------------|-----------------|------------------|
|                 | MKL_SMASK? unit | level            |

## ■ Parameter

unit

Unit

| Value | Unit             |
|-------|------------------|
| None  | Setting for Unit |
| DB    | dB               |
| DBM   | dBm              |
| W     | W                |

## level

# Marker value

| Unit | Resolution           |
|------|----------------------|
| dBm  | 0.01                 |
| dB   | 0.01                 |
| W    | 4 significant digits |

# ■ Use example

Reads out the marker value in dBm unit at Spectrum Mask measurement.

<Program>

DSPLADJ

MKL\_SMASK? DBM

<Response>

-45.23

# MKL\_SPU

# **■** Function

Marker Level for Spurious Emission

Reads out the marker position level when waveform display turns On for spurious emission.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | MKL_SPU? a, u | 1                |

# ■ Parameter

я

# Frequency Table

| Value     | Unit |  |
|-----------|------|--|
| F1 to F15 | None |  |

и

# Unit

| С     | Unit  |
|-------|-------|
| None  | dBm   |
| DBM   | dBm   |
| DB    | dB    |
| W     | W     |
| W_MHZ | W/MHz |

1

# Marker Level

| Output unit | Resolution           |
|-------------|----------------------|
| dBm         | 0.01                 |
| dB          | 0.01                 |
| W           | 1 significant digits |
| W/MHz       | 4 significant digits |

# ■ Use example

Reads out marker level of frequency table F1 at sweep measurement.

<Program>

DSPL SPURIOUS, SWEEP WAVEFORM\_SPU ON SWP MKL\_SPU? F1,DBM

<Response>

-60.54

# MKN\_ADJ

#### ■ Function

Marker Position for Adjacent Channel Power in Frequency

Specifies the marker position by frequency at Adjacent Channel Power measurement.

This command functions the same as the MKRS\_ADJ command.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKN_ADJ freq    | MKN_ADJ?      | freq             |

## ■ Parameter

freq

Frequency

| Data points | Range                   | Resolution | Unit       | Initial value |
|-------------|-------------------------|------------|------------|---------------|
| 1001        | -41000000 to 41000000   | 10000      | $_{ m Hz}$ | 0             |
| 501         | -41000000 to $41000000$ | 20000      | $_{ m Hz}$ | 0             |

## ☐ Suffix code

None: Hz HZ: Hz KHZ: kHz MHZ: MHz GHZ: GHz

# ■ Restrictions

- This setting is not possible when Marker is not displayed.
- Valid for Spectrum (All) measurement.

# ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the marker position to 10 MHz at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

MKN\_ADJ 10MHZ

MKN\_ADJ?

<Response>

# MKN\_SMASK

#### **■** Function

Marker Position for Spectrum Mask in Frequency

Specifies the marker position by frequency at Spectrum Mask measurement.

This command functions the same as the MKRS\_SMASK command.

# ■ Syntax

| Program Message | Query Message   | Response Message |
|-----------------|-----------------|------------------|
| MKN_SMASK freq  | MKRS MKN_SMASK? | freq             |

## ■ Parameter

freq

Frequency

| System                                     | Range                 | Resolution | Unit       | Initial value |
|--------------------------------------------|-----------------------|------------|------------|---------------|
| IEEE802.11b, IEEE802.11g<br>(ERP-DSSS/CCK) | -30000000 to 30000000 | 10000      | $_{ m Hz}$ | 0             |
| Other than the above                       | -40000000 to 40000000 | 10000      | Hz         | 0             |

## ☐ Suffix code

None: Hz HZ: Hz KHZ: kHz MHZ: MHz GHZ: GHz

## ■ Initialization command

PRE

INI

IΡ

\*RST

# ■ Use example

Sets the marker position to 10 MHz at Spectrum Mask measurement

<Program>

DSPL SMASK

MKN\_SMASK 10MHZ

MKN\_SMASK?

<Response>

# MKP\_ADJ

#### ■ Function

Marker Position for Adjacent Channel Power in position

Specifies the marker position by the number of points at Adjacent Channel Power measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKP_ADJ point   | MKP_ADJ?      | point            |

## ■ Parameter

point

Marker position

| Number of Measurement Points | Range     | Resolution | Initial value |
|------------------------------|-----------|------------|---------------|
| 501                          | 45 to 455 | 1          | 250           |
| 1001                         | 90 to 910 | 1          | 500           |

## ■ Restrictions

- This setting is not possible when Marker is not displayed.
- Valid for Spectrum (All) measurement.

#### ■ Initialization command

PRE

INI

IP

\*RST

# ■ Use example

Sets the marker position to 300 points at the Spectrum (All) measurement in Adjacent Channel Power measurement.

<Program>

DSPL ADJ

 $MKP\_ADJ~300$ 

MKP\_ADJ?

<Response>

# MKP\_CCDF

## **■** Function

Marker Position for CCDF

Specifies the marker position on the CCDF screen.

# ■ Syntax

| Program Message | Query Message | Response Message |  |
|-----------------|---------------|------------------|--|
| MKP_CCDF a      | MKP_CCDF?     | a                |  |

#### ■ Parameter

a

Sets either power deviation or probability by the setting value of Display Data Type (cf. DIP-TYPE\_CCDF).

| Display Data Type | Range              | Resolution | Unit                 |
|-------------------|--------------------|------------|----------------------|
| Probability       | 0.0001 to 100.0000 | 0.0001     | Probability (%)      |
| Distribution      | 0.0 to 50.0        | 0.1        | Power deviation (dB) |

## ■ Initialization command

PRE

INI IP

\*RST

# ■ Use example

Sets the Marker to 10.0 dB.

<Program>

DSPL CCDF,CCDF

MKR\_CCDF NRM

MKP\_CCDF 10.0

MKP\_CCDF?

<Response>

10.0

# MKP\_MOD

#### ■ Function

Marker Position for Modulation Analysis

(Constellation, Eye Diagram, EVM vs. Symbol, Phase Error vs. Symbol, EVM vs. Sub-carrier, Spectrum Flatness)

Specifies the marker position when Trance Format is set to Constellation, Eye Diagram, EVM vs. Symbol, Phase Error vs. Symbol, EVM vs. Sub-carrier, Spectrum Flatness at Modulation Analysis measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKP MOD a,b     | MKP_MOD? a    | b                |
| MKI_MOD a,b     | MKP_MOD?      | a,b              |
| MKP_MOD a       | MKP_MOD?      | а                |

#### ■ Parameter

a,b

Marker position

Target System: IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g(ERP-OFDM), IEEE802.11g (DSSS-OFDM)

When Data Rate is Auto (for HiSWANa)

| а         | В                  | Resolution | Marker Position                                                                    |
|-----------|--------------------|------------|------------------------------------------------------------------------------------|
| SYM       | 1 to 1367          | 1          | Specifies Symbol mark. Sub-carrier number is located at present Marker position.   |
| SUB       | -26 to -1, 1 to 26 | 1          | Specifies Sub-carrier number. Symbol number is located at present Marker position. |
| 1 to 1367 | -26  to  -1, 1  to | 1          | Specifies Symbol and Sub-carrier numbers simultaneously.                           |

Target System: HiSWANa When Data Rate is except Auto

| а         | В                      | Resolution | Marker Position                                                                    |
|-----------|------------------------|------------|------------------------------------------------------------------------------------|
| SYM       | 1 to 1367              | 1          | Specifies Symbol mark. Sub-carrier number is located at present Marker position.   |
| SUB       | -26  to  -1, 1  to  26 | 1          | Specifies Sub-carrier number. Symbol number is located at present Marker position. |
| 1 to 1367 | -26  to  -1, 1  to     | 1          | Specifies Symbol and Sub-carrier numbers simultaneously.                           |

Initial value: Symbol number: 1

Sub-carrier number: -26

# Target System: IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)

| Trace Format                                          | а             | Resolution | Initial Value |
|-------------------------------------------------------|---------------|------------|---------------|
| Constellation, EVM vs. Symbol, Phase Error vs. Symbol | 0 to 4095     | 1          | 0             |
| Eye Diagram                                           | 0.0 to 4095.0 | 0.1        | 0.0           |

## ■ Restrictions

- This setting is not possible when Trace Format is No trace (*cf.* TRFORM).
- This setting is not possible when Marker Mode is Off (*cf.* MKR\_MOD).

# ■ Initialization command

PRE

INI

IΡ

\*RST

## ■ Use example

Sets the marker position to Symbol 10, Sub-carrier -7 on the Constellation screen.

<Program>

TGTSY 11A

DSPL MODANAL

TRFORM CONSTEL

SWP

MKR\_MOD NRM

MKP\_MOD 10, -7

MKP\_MOD?

<Response>

10, -7

# MKP\_RFPWR

## **■** Function

Marker Position for RF Power

Specifies the marker position at RF Power measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKP_RFPWR a     | MKP_RFPWR?    | a                |

## ■ Parameter

а

Marker position

| Trace Format | а                                                      | Initial Value     | Resolution | Unit |
|--------------|--------------------------------------------------------|-------------------|------------|------|
| Slot         | -20 to (Signal length + 20)                            | Center of display | 0.1        | μsec |
| Transient    | -4 to 4, (Signal length - 4)<br>to (Signal length + 4) | 4.0               | 0.1        | μsec |

<sup>\*</sup> A signal length refers to the sum of the analysis length, preamble, and signal information section (such as signal field).

# ■ Restrictions

• Setting is disabled when Marker Mode is Off (cf. MKR\_RFPWR).

# ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets the marker position to 0.0 µsec on the Transient screen.

<Program>

DSPL RFPWR

TRFORM\_RFPWR TRNSNT

**SWP** 

MKR\_RFPWR NRM

 $MKP\_RFPWR~0.0$ 

MKP\_RFPWR?

<Response>

0.0

# MKP\_SMASK

# **■** Function

Marker Position for Spectrum Mask in position

Specifies the marker position by the number of points at Spectrum Mask measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKP_SMASK point | MKP_SMASK?    | point            |

## ■ Parameter

point

Marker position

| Range     | Resolution | Initial value |
|-----------|------------|---------------|
| 0 to 1000 | 1          | 500           |

## ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets the marker position to 1000 points at Spectrum Mask measurement.

<Program>

DSPL SMASK

 $MKP\_SMASK~1000$ 

MKP\_SMASK?

<Response>

# MKP\_SPU

## ■ Function

Set Marker Position on Waveform Display for Spurious Emission Sets marker position when waveform display turns On for spurious emission.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKP_SPU a       | MKP_SPU?      | a                |

## ■ Parameter

а

# Marker Position

| Value     | Data Point | Initial Value                        | Resolution | Unit |
|-----------|------------|--------------------------------------|------------|------|
| 0 to 1000 | 1001       | Point where marker level is greatest | 1          | None |
| 0 to 500  | 501        | Point where marker level is greatest | 1          | None |

# ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets marker position to 100 points at sweep measurement.

<Program>

DSPL SPURIOUS, SWEEP

WAVEFORM\_SPU ON

SWP

MKP\_SPU 100

MKP\_SPU?

<Response>

# MKR\_ADJ

# **■** Function

Marker Mode for Adjacent Channel Power

Sets whether to display the marker at Adjacent Channel Power measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKR_ADJ a       | MKR_ADJ?      | a                |

## ■ Parameter

a

Marker display

| Value | Description         | Initial value |
|-------|---------------------|---------------|
| NRM   | Displays the marker |               |
| OFF   | Deletes the marker  | *             |

# ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Displays the marker value at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

 $MKR\_ADJ$  NRM

MKR\_ADJ?

<Response>

# MKR\_CCDF

## **■** Function

Marker Mode for CCDF

Sets Marker to On or Off on the CCDF screen.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKR_CCDF mode   | MKR_CCDF?     | mode             |

## ■ Parameter

mode

Marker setting

| Value | Marker setting                                                                        | Initial value |
|-------|---------------------------------------------------------------------------------------|---------------|
| NRM   | Normal: Displays the marker, and changes the marker position into entry status.       |               |
| OFF   | Off: Erases the marker display, and cancels the entry status for the marker position. | *             |

## ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Changes the marker mode into entry status.

<Program>

DSPL CCDF,CCDF

SWP

 $MKR\_CCDF\ NRM$ 

MKP\_CCDF?

<Response>

# MKR\_MOD

## **■** Function

Marker Mode for Modulation Analysis

Sets Marker to On or Off for each trace at Modulation Analysis measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKR_MOD mode    | MKR_MOD?      | mode             |

#### ■ Parameter

mode

Marker setting

| Value | Marker setting                                                                        | Initial value |
|-------|---------------------------------------------------------------------------------------|---------------|
| NRM   | Normal: Displays the marker, and changes the marker position into entry status.       |               |
| OFF   | Off: Erases the marker display, and cancels the entry status for the marker position. | *             |

# ■ Restrictions

• This setting is not possible when Trace Format is set to No Trace (cf. TRFORM).

## ■ Initialization command

PRE

INI

IP

\*RST

# ■ Use example

Displays a marker in the Constellation display on the Modulation Analysis screen.

<Program>

DSPL MODANAL

TRFORM CONSTEL

SWP

MKR\_MOD NRM

MKR\_MOD?

<Response>

# MKR\_RFPWR

## ■ Function

Marker Mode for RF Power

Sets the marker to On or Off for each trace at RF Power measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKR_RFPWR mode  | MKR_RFPWR?    | mode             |

## ■ Parameter

mode

Marker setting

| Value | Marker setting                                                                       | Initial Value |
|-------|--------------------------------------------------------------------------------------|---------------|
| NRM   | Normal: Displays the marker and changes the marker position to entry status.         |               |
| OFF   | Off: Erases the marker display and cancels the entry status for the marker position. | *             |

# ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Displays marker on the RF Power screen.

<Program>

DSPL RFPWR

SWP

MKR\_RFPWR NRM

MKR\_RFPWR?

<Response>

# MKR\_SMASK

# **■** Function

Marker Mode for Spectrum Mask

Sets whether to display the marker at Spectrum Mask measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKR_SMASK a     | MKR_SMASK?    | a                |

## ■ Parameter

а

Marker display

| Value | Description         | Initial value |
|-------|---------------------|---------------|
| NRM   | Displays the marker |               |
| OFF   | Deletes the marker  | *             |

# ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Displays the marker value at Spectrum Mask measurement.

<Program>

DSPL SMASK

 $MKR\_SMASK\ NRM$ 

MKR\_SMASK?

<Response>

# MKRS\_ADJ

#### ■ Function

Marker Position for Adjacent Channel Power in Frequency

Specifies the marker position by frequency at Adjacent Channel Power measurement.

This command functions the same as the MKN\_ADJ command.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKRS_ADJ freq   | MKRS_ADJ?     | freq             |

#### ■ Parameter

freq

Frequency

| Data points | Range                 | Resolution | Unit       | Initial value |
|-------------|-----------------------|------------|------------|---------------|
| 1001        | -41000000 to 41000000 | 10000      | $_{ m Hz}$ | 0             |
| 501         | -41000000 to 41000000 | 20000      | $_{ m Hz}$ | 0             |

## ☐ Suffix code

None: Hz HZ: Hz KHZ: kHz MHZ: MHz GHZ: GHz

## ■ Restrictions

- This setting is not possible when Marker is not displayed.
- Valid for Spectrum (All) measurement.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the marker position to 10 MHz at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

MKRS\_ADJ 10MHZ

MKRS\_ADJ?

<Response>

# MKRS\_SMASK

#### **■** Function

Marker Position for Spectrum Mask in Frequency

Specifies the marker position by frequency at Spectrum Mask measurement.

This command functions the same as the MKN\_SMASK command.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MKRS_SMASK freq | MKRS _SMASK?  | freq             |

## ■ Parameter

freq

Frequency

| System                                     | Range                 | Resolution | Unit | Initial value |
|--------------------------------------------|-----------------------|------------|------|---------------|
| IEEE802.11b, IEEE802.11g<br>(ERP-DSSS/CCK) | -30000000 to 30000000 | 10000      | Hz   | 0             |
| Other than the above                       | -40000000 to 40000000 | 10000      | Hz   | 0             |

☐ Suffix code

None: Hz HZ: Hz KHZ: kHz MHZ: MHz GHZ: GHz

## ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets the marker position to 10 MHz at Spectrum Mask measurement.

<Program>

DSPL SMASK

MKRS\_SMASK 10MHZ

MKRS\_SMASK?

<Response>

# **MKSSYM**

#### **■** Function

Marker Number for Modulation Analysis

Outputs Symbol number of Marker or Sub-carrier number at Modulation Analysis measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | MKSSYM? mode  | number           |

#### ■ Parameter

mode

Type of reading number

| Target System (cf. TGTSY)                                      | Trace Format (cf. TRFORM)                 | Value | Туре               |
|----------------------------------------------------------------|-------------------------------------------|-------|--------------------|
|                                                                | Constellation                             | None  | Symbol number      |
| IEEE802.11a,                                                   |                                           | SYM   | Symbol number      |
| HiperLAN2,                                                     |                                           | SUB   | Sub-carrier number |
| HISWANA,<br>IEEE802.11g (ERP-OFDM),<br>IEEE802.11g (DSSS-OFDM) | EVM vs. Symbol,<br>Phase Error vs. Symbol | None  | Symbol number      |
|                                                                |                                           | SYM   | Symbol number      |
|                                                                | EVM vs. Sub-carrier, Spectrum Flatness    | None  | Sub-carrier number |
|                                                                |                                           | SUB   | Sub-carrier number |
| IEEE802.11b,<br>IEEE802.11g (ERP-DSSS/CCK)                     | All waveform formats                      |       | Chip Number        |

## number

# Reading number

| Type of reading number | Range              | Resolution |
|------------------------|--------------------|------------|
| Symbol number          | 1 to 1367          | 1          |
| Sub-carrier number     | -26  to  -1, 1  to | 1          |
| Chip Number            | 0 to 4095          | 1*         |

<sup>\*:</sup> Resolution is 0.1 at Eye Diagram Trace Format.

# ■ Restrictions

- "\*\*\*" is read out when Trace Format is No Trace (cf. TRFORM).
- "\*\*\*" is read out when Marker is Off (cf. MKR\_MOD).

## ■ Initialization command

PRE

INI

IP

\*RST

# ■ Use example

Reads out Symbol number of Marker in Constellation display.

<Program>

TGTSY 11A

DSPL MODANAL

TRFORM CONSTEL

 $MKR\_MOD\ NRM$ 

SWP

MKSSYM? SYM

<Response>

# MOD\_SYM

## ■ Function

Modulation for every symbol

Reads out modulation for every symbol at Modulation Analysis measurement.

# ■ Syntax

| Program Message | Query Message   | Response Message |
|-----------------|-----------------|------------------|
|                 | MOD_SYM? symbol | mod              |

## ■ Parameter

symbol

Symbol number

| Value     | Resolution | Unit   |
|-----------|------------|--------|
| 1 to 1367 | 1          | Symbol |

#### mod

# Modulation

| Value      | Modulation       |
|------------|------------------|
| OFDM_BPSK  | BPSK modulation  |
| OFDM_QPSK  | QPSK modulation  |
| OFDM_16QAM | 16QAM modulation |
| OFDM_64QAM | 64QAM modulation |

## ■ Restrictions

• This command is enabled only when Target System is HiSWANa and Data Rate is Auto.

## ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Reads out modulation for 5 symbol at Modulation Analysis measurement.

<Program>

TGTSY HISWAN

DATRATE AUTO

DSPL MODANAL

MOD\_SYM? 5

<Response>

OFDM-BPSK

# MODE\_BCH

# **■** Function

Batch Measurement

Sets countermeasures in case an error occurs during batch measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MODE_BCH mode   | MODE_BCH?     | mode             |

# ■ Parameter

mode

Countermeasures

| mode | Description                                                                                                                  | Initial value |
|------|------------------------------------------------------------------------------------------------------------------------------|---------------|
| NRM  | Continues batch measurement until completed, irrespective of whether an error occurs during measurement.                     | λ¢            |
| FAIL | Stops batch measurement if a parameter is judged as "FAIL" by the individual pass/fail judgement during measurement.         |               |
| ABN  | Stops batch measurement if a status error occurs during measurement.                                                         |               |
| ABRT | Stops batch measurement if a status error occurs or a parameter is judged as "FAIL" by the individual pass/fail measurement. |               |

# ■ Initialization command

PRE

INI

IP

\*RST

# ■ Use example

Stops batch measurement if a status error occurs during measurement.

<Program>

DSPL BATCH

MODE\_BCH ABN

MODE\_BCH?

<Response>

ABN

# **MODTYPE**

#### **■** Function

Modulation Type

Sets the modulation type of the measured signal.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MODTYPE mod     | MODTYPE?      | mod              |

#### ■ Parameter

mod

Modulation type

Target System: IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM), IEEE802.11g (DSSS-OFDM)

| Value   | Modulation type | Initial value |
|---------|-----------------|---------------|
| OFBPSK  | OFDM-BPSK       |               |
| OFQPSK  | OFDM-QPSK       |               |
| OF16QAM | OFDM-16QAM      | *             |
| OF64QAM | OFDM-64QAM      |               |

Target System: IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)

| Value   | Modulation type | Initial value |
|---------|-----------------|---------------|
| DBPSK   | DBPSK           |               |
| DQPSK   | DQPSK           |               |
| CCK5_5M | CCK-5.5 Mbps    |               |
| CCK11M  | CCK-11 Mbps     | *             |

# ■ Use example

Sets the modulation type to OFDM-64QAM.

<Program>

TGTSY 11A

DSPL SETCOM

MODTYPE OF64QAM

MODTYPE?

<Response>

OF64QAM

# MRGN\_SPU

## ■ Function

Margin for Spurious Emission

Sets all Limit values for pass/fail judgement on the Spurious Emission screen.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| MRGN_SPU a,b,c  | MRGN_SPU? a,b | c                |

# ■ Parameter

а

Setup Table

| а     | Setup Table              |  |
|-------|--------------------------|--|
| SPOT  | Setup Spot Table         |  |
| SWEEP | Setup Search/Sweep Table |  |

b

Judgement method

| b       |
|---------|
| ABS_W   |
| ABS_DBM |
| REL     |

c

Setting range

| Setting range |               |            |               |      |
|---------------|---------------|------------|---------------|------|
|               | С             | Resolution | Initial Value | Unit |
| ABS_W         | 0.00 to 10.00 | 0.01       | 0.00          | dB   |
| ABS_DBM       | 0.00 to 10.00 | 0.01       | 0.00          | dB   |
| REL           | 0.00 to 10.00 | 0.01       | 0.00          | dB   |

# ■ Use example

Adds 1 dB (absolute value) to the Limit value in the frequency table for Spot measurement.

<Program>

DSPL  $SETTBL\_SPU$ , SPOT

MRGN\_SPU, SPOT ABS\_DBM 1.00

MRGM\_SPU? SPOT,ABS\_DBM

<Response>

1.00

# **MSTAT**

#### **■** Function

Returns the current measurement status.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | MSTAT?        | status           |

# ■ Parameter

status

Measurement state

| Value | Measurement State         |  |
|-------|---------------------------|--|
| 0     | Normal termination        |  |
| 1     | RF-signal level limit     |  |
| 2     | Level over                |  |
| 3     | Level under               |  |
| 4     | Receiving signal abnormal |  |
| 5     | Synchronization failure   |  |
| 6     | Trigger time out          |  |
| 9     | Not measured              |  |
| 10    | Preamble not detected     |  |

- "Level limit" represents the signal that has gone beyond the RF level limit that can be input to the measuring instrument.
- "Level over" represents the signal that can be measured by adjusting the Reference level.

# ■ Use example

Reads out the measurement status after modulation analysis.

<Program>

DSPL MODANAL

SWP

MSTAT?

<Response>

# MSTAT\_BCH

# **■** Function

Measurement Status for Batch Measurement Returns the measurement status on the Batch screen.

# ■ Syntax

| Program Message | Query Message   | Response Message |
|-----------------|-----------------|------------------|
|                 | MSTAT_BCH? item | а                |

## ■ Parameter

item

# Measurement Item

| mode | Measurement Item                   |  |
|------|------------------------------------|--|
| MOD  | Modulation Analysis measurement    |  |
| PWR  | RF Power measurement               |  |
| OBW  | Occupied BandWidth measurement     |  |
| ACP  | Adjacent Channel Power measurement |  |
| MSK  | Spectrum Mask measurement          |  |
| SPR1 | Spurious Emission1 measurement     |  |
| SPR2 | Spurious Emission2 measurement     |  |

я

## Measurement state

| а  | Measurement State            |
|----|------------------------------|
| 0  | Normal termination           |
| 1  | RF input level limit         |
| 2  | Level Over                   |
| 3  | Level Under                  |
| 4  | Receiving signal abnormal    |
| 5  | Synchronization failure      |
| 6  | Trigger timeout              |
| 9  | Not measured                 |
| 10 | Preamble signal not detected |

# ■ Use example

Reads out the Modulation Analysis measurement state on the Batch screen.

<Program>

DSPL BATCH

MSTAT\_BCH? MOD

<Response>

# **NUMBST**

#### **■** Function

Number of Burst

Reads out the number of bursts for every modulation at Modulation Analysis measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | NUMBST? mod   | symbol           |

#### ■ Parameter

mod

## modulation

| Value | Modulation       |
|-------|------------------|
| BPSK  | BPSK modulation  |
| QPSK  | QPSK modulation  |
| 16QAM | 16QAM modulation |
| 64QAM | 64QAM modulation |

# symbol

# number of symbols

| Resolution | Unit   |
|------------|--------|
| 1          | Symbol |

## ■ Restrictions

- This command is enabled only when Target System is HiSWANa and Data Rate is Auto.
- This command is enabled only when Storage Mode is Average.

## ■ Use example

Reads out the number of bursts by which 16QAM modulated at Modulation Analysis measurement.

<Program>

TGTSY HISWAN

DATRATE AUTO

MEAS MODANAL

STRG\_MOD AVG

NUMBST? 16QAM

<Response>

# NUMSYM\_BST

#### **■** Function

Number of Symbol for Burst

Reads out the number of symbols for every modulation at Modulation Analysis measurement.

# ■ Syntax

| Program Message | Query Message   | Response Message |
|-----------------|-----------------|------------------|
|                 | NUMSYM_BST? mod | symbol           |

## ■ Parameter

mod

## modulation

| Value | Modulation       |
|-------|------------------|
| BPSK  | BPSK modulation  |
| QPSK  | QPSK modulation  |
| 16QAM | 16QAM modulation |
| 64QAM | 64QAM modulation |

# symbol

# number of symbols

| Resolution | Unit   |
|------------|--------|
| 1          | Symbol |

## ■ Restrictions

• This command is enabled only when Target System is HiSWANa and Data Rate is Auto.

# ■ Use example

Reads out the number of symbols by which BPSK modulated at Modulation Analysis measurement.

<Program>

TGTSY HISWAN

DATRATE AUTO

MEAS MODANAL

NUMSYM\_BST? BPSK

<Response>

# NUMSYM\_TOTAL

#### ■ Function

Number of Total Symbol

Reads out all the numbers of symbols for every modulation at Modulation Analysis measurement.

# ■ Syntax

| Program Message | Query Message     | Response Message |
|-----------------|-------------------|------------------|
|                 | NUMSYM_TOTAL? mod | symbol           |

#### ■ Parameter

mod

## modulation

| Value | Modulation       |
|-------|------------------|
| BPSK  | BPSK modulation  |
| QPSK  | QPSK modulation  |
| 16QAM | 16QAM modulation |
| 64QAM | 64QAM modulation |

## symbol

# number of symbols

| Resolution | Unit   |
|------------|--------|
| 1          | Symbol |

## ■ Restrictions

- This command is enabled only when Target System is HiSWANa and Data Rate is Auto.
- This command is enabled only when Storage Mode is Average.

## ■ Use example

Reads out all the numbers of symbols by which BPSK modulated at Modulation Analysis measurement.

<Program>

TGTSY HISWAN

DATRATE AUTO

MEAS MODANAL

STRG\_MOD AVG

NUMSYM\_TOTAL? BPSK

<Response>

# **OBW**

## **■** Function

Occupied Bandwidth

Reads out the occupied frequency bandwidth at Occupied Bandwidth measurement.

This command functions the same as the OCCBW command.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | OBW? pc       | bw               |

# ■ Parameter

pc

Percentage of power

| Value | Measurement Details                                                          |
|-------|------------------------------------------------------------------------------|
| 99    | Reads out the occupied frequency bandwidth containing 99% of the total power |
| 90    | Reads out the occupied frequency bandwidth containing 90% of the total power |
|       | Reads out the occupied frequency bandwidth containing 99% of the total power |

## bw

Occupied frequency bandwidth

| Resolution | Unit       |
|------------|------------|
| 1          | $_{ m Hz}$ |

# ■ Use example

Reads out the occupied frequency bandwidth (99%) at Occupied Bandwidth measurement.

<Program>

DSPL OBW

OBW?

<Response>

# **OBWFREQ**

## **■** Function

Occupied Bandwidth Limit and Center

Reads out the center, upper or lower frequency of the waveform at Occupied Bandwidth measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | OBWFREQ? area | freq             |

## ■ Parameter

area

Percentage of power

| Value  | Measurement Details                                                 |  |
|--------|---------------------------------------------------------------------|--|
| UPPER  | Reads out the upper limit of the occupied frequency bandwidth (99%) |  |
| +      | heads out the upper mint of the occupied frequency bandwidth (3970) |  |
| LOWER  | Reads out the lower limit of the occupied frequency bandwidth (99%) |  |
| _      |                                                                     |  |
| CENTER | Reads out the center frequency of the occupied frequency bandwidth  |  |

# freq

Occupied frequency bandwidth

| Resolution | Unit       |
|------------|------------|
| 1          | $_{ m Hz}$ |

# ■ Use example

Reads out the center frequency of the occupied frequency bandwidth at Occupied Bandwidth measurement.

<Program>

DSPL OBW

**OBWFREQ? CENTER** 

<Response>

# **OCCBW**

## **■** Function

Occupied Bandwidth

Reads out the occupied frequency bandwidth at Occupied Bandwidth measurement.

This command functions the same as the OBW command.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | OCCBW? pc     | bw               |

# ■ Parameter

pc

Percentage of power

| Value | Measurement Details                                                          |
|-------|------------------------------------------------------------------------------|
| 99    | Reads out the occupied frequency bandwidth containing 99% of the total power |
| 90    | Reads out the occupied frequency bandwidth containing 90% of the total power |
|       | Reads out the occupied frequency bandwidth containing 99% of the total power |

bw

Occupied frequency bandwidth

| Resolution | Unit       |
|------------|------------|
| 1          | $_{ m Hz}$ |

# ■ Use example

Reads out the occupied frequency bandwidth (99%) at Occupied Bandwidth measurement.

<Program>

DSPL OBW

OCCBW?

<Response>

# **OFFPWR**

#### **■** Function

Carrier Off Power

Outputs average power when transmission is Off at RF Power measurement.

# ■ Syntax

| Program Message | Query Message | Response Message     |
|-----------------|---------------|----------------------|
|                 | OFFPWR?       | of fpwr 1, of fpwr 2 |

## ■ Parameter

offpwr1/offpwr2

Average power when transmission is Off

| Power   | Resolution              | Unit |
|---------|-------------------------|------|
| offpwr1 | 0.01                    | dBm  |
| offpwr2 | Four significant digits | W    |

## ■ Use example

Reads out the measured results for Carrier Off Power.

<Program>

MEAS RFPWR

OFFPWR?

<Response>

-12.34, 0.00005834

# **ORGOFS**

#### **■** Function

Origin Offset

Outputs the Origin Offset in Modulation Analysis measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | ORGOFS?       | offset           |

#### ■ Parameter

offset

Origin offset

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

## ■ Restrictions

• This command is enabled when Target System is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) (*cf.* TGTSY).

## ■ Use example

Reads out Origin Offset.

<Program>

TGTSY 11B

MEAS MODANAL

ORGOFS?

<Response>

-12.34

# PEAK\_SMASK

## ■ Function

Peak Data for Spectrum Mask

Reads out peak value of measured value and pass/fail judgement results for spectrum mask measurement.

# ■ Syntax

| Program Message | Query Message          | Response Message |
|-----------------|------------------------|------------------|
|                 | PEAK_SMASK? type, unit | freq, lvl, judge |

## ■ Parameter

type

Readout data type

| Range                          | Readout Data                                                                                                                                                                                                  |  |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ALL                            | Displays result at a measurement point with the minimum margin to standard line within all frequency bands of standard line                                                                                   |  |
| PEAK                           | Displays result at a measurement point with the minimum margin to standard line                                                                                                                               |  |
| L4, L3, L2, L1, U1, U2, U3, U4 | Displays result at a measurement point with the minimum margin to standard line at the specified frequency bands of standard line L4, L3, U3 and U4 are invalid for IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) |  |

#### unit

Unit

| Value | Unit               |
|-------|--------------------|
| None  | Set value for unit |
| DB    | dB                 |
| DBM   | dBm                |
| W     | W                  |
| MW    | mW                 |
| UW    | uW                 |
| NW    | nW                 |

# freq

Frequency

| Resolution | Unit       |
|------------|------------|
| 1          | $_{ m Hz}$ |

## level

#### Level

| Unit | Resolution           |
|------|----------------------|
| dBm  | 0.01                 |
| dB   | 0.01                 |
| W    | 4 significant digits |
| mW   | 4 significant digits |
| uW   | 4 significant digits |
| nW   | 4 significant digits |

## judge

# Judgement result

| Value | Judgement Results |
|-------|-------------------|
| PASS  | Passed            |
| FAIL  | Failed            |

#### ■ Restrictions

• The value for unit is set to DB when Display Type is set to Margin.

## ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Reads out measured value at a point with the minimum margin at spectrum mask measurement.

<Program>

DSPL SMASK

DISPTYPE\_SMASK LVL

SWP

PEAK\_SMASK? PEAK, DB

<Response>

100023, -10.45, PASS

# **PHASEERR**

#### **■** Function

RMS Phase Error

Outputs the measured results for the RMS value of Phase Error at Modulation Analysis measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | PHASEERR? mod | phase            |

#### ■ Parameter

mod

Modulation

| Resolution | Modulation       |
|------------|------------------|
| BPSK       | BPSK modulation  |
| QPSK       | QPSK modulation  |
| 16QAM      | 16QAM modulation |
| 64QAM      | 64QAM modulation |
| TOTAL      | Every modulation |

#### phase

RMS value of Phase Error

| Resolution | Unit |
|------------|------|
| 0.01       | deg  |

#### ■ Restrictions

• A setup of mod(modulation) is enabled only when Target System is HiSWANa and Data Rate is Auto.

## ■ Use example

Reads out the measured results of phase error.

<Program>

DSPL MODANAL

 $\operatorname{SWP}$ 

PHASEERR?

<Response>

# **PHSYM**

## ■ Function

Phase Error vs. Symbol

Outputs the measured results every Symbol of Phase Error vs. Symbol at Modulation Analysis measurement.

# ■ Syntax

| Program Message | Query Message | Response Message                         |
|-----------------|---------------|------------------------------------------|
|                 | PHSYM? sym,n  | phase(sym),phase(sym+1),,phase (sym+n-1) |

## ■ Parameter

sym

Starting address to read out data (Symbol number)

| Target System                                                                          | Value                       | Resolution |
|----------------------------------------------------------------------------------------|-----------------------------|------------|
| IEEE802.11a, HiperLAN2, HiSWANa,<br>IEEE802.11g (ERP-OFDM),<br>IEEE802.11g (DSSS-OFDM) | 1 to 1367                   | 1          |
| HiSWANa(When Data Rate is not Auto.)                                                   | (Analysis Start)<br>to 1367 | 1          |
| IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)                                                | 0 to 4095                   | 1          |

#### n

# Number of data reading

| Target System                                                                          | Value                       | Resolution |
|----------------------------------------------------------------------------------------|-----------------------------|------------|
| IEEE802.11a, HiperLAN2, HiSWANa,<br>IEEE802.11g (ERP-OFDM),<br>IEEE802.11g (DSSS-OFDM) | 1 to 1367                   | 1          |
| HiSWANa(When Data Rate is not Auto.)                                                   | (Analysis Start)<br>to 1367 | 1          |
| IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)                                                | 1 to 4096                   | 1          |

# phase(sym)

Results of Symbol sym

| Value             | Resolution | Output unit |
|-------------------|------------|-------------|
| -32768 to $32767$ | 1          | 0.01 deg    |

# ■ Data storage method

Target System: IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM), IEEE802.11g (DSSS-OFDM)

| Address       | 1 | 2 | <br>1366 | 1367 |
|---------------|---|---|----------|------|
| Symbol number | 1 | 2 | <br>1366 | 1367 |

Target System: IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)

| Address     | 1 | 2 | <br>4095 | 4096 |
|-------------|---|---|----------|------|
| Chip Number | 0 | 1 | <br>4094 | 4095 |

## ■ Use example

Reads out 5 pieces of Phase Error vs. symbol from Symbol number 1.

<Program>

MEAS MODANAL

PHSYM? 1,5

<Response>

123, -234, 135, -257, 149

# PHY\_BURST

#### **■** Function

PHY Burst for HiSWANa

Reads out Judgement result for PHY Burst at Modulation Analysis measurement and RF Power measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | PHY_BURST? a  | phy              |

## ■ Parameter

а

#### Measurement screen

| Value   | Measurement screen  |
|---------|---------------------|
| MODANAL | Modulation Analysis |
| RFPWR   | RF Power            |

## phy

# PHY Burst

| Value    | PHY Burst       |
|----------|-----------------|
| BC_BURST | Broadcast Burst |
| DL_BURST | Downlink Burst  |
| UL_BURST | Uplink Burst    |

## ■ Restrictions

• This command is enabled only when Target System is HiSWANa and Measuring Object is Burst(All).

## ■ Initialization command

PRE

INI

IΡ

\*RST

# ■ Use example

Reads out Judgement result for PHY Burst at Modulation Analysis measurement.  ${\tt <\!Program\!>}$ 

TGTSY HISWAN MEASOBJ ALL\_BURST DSPL MODANAL PHY\_BURST? MODANAL

<Response>
BC\_BURST

# PLVL\_SMASK

## ■ Function

Peak Level-Spectrum Mask

Reads out the peak value within the signal band on the Spectrum Mask screen.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | PLVL_SMASK?   | a                |

#### ■ Parameter

a

Peak level

| Resolution | Output unit |
|------------|-------------|
| 0.01       | dBm         |

# ■ Use example

Reads out the peak value within the signal band.

<Program>

DSPL SMASK

SWP

PLVL\_SMASK?

<Response>

-34.56

# **PNLMD**

#### ■ Function

Panel Mode

Switches the measurement mode for the Spectrum Analyzer.

# ■ Syntax

| Program Message | Query Message | Response Message |  |
|-----------------|---------------|------------------|--|
| PNLMD mode      | PNLMD?        | mode             |  |

#### ■ Parameter

mode

Measurement mode

| Value  | Measurement Mode       |
|--------|------------------------|
| SPECT  | Spectrum Analyzer mode |
| SYSTEM | Signal Analysis mode   |
| CONFIG | Config mode            |

# ■ Use example

Switches to the Signal Analysis mode.

<Program>

PNLMD SYSTEM

PNLMD?

<Response>

SYSTEM

# **POWER**

#### **■** Function

Power

Outputs the absolute or relative value of the average RF power measured by the power meter.

# ■ Syntax

| Program Message | Query Message | Response Message |  |
|-----------------|---------------|------------------|--|
|                 | POWER? unit   | pwr              |  |

## ■ Parameter

unit

Readout unit

| Value | Readout unit |
|-------|--------------|
| DBM   | dBm          |
| WATT  | W            |
| DB    | dB           |

#### pwr

Absolute or relative value of average RF power

| Resolution | Unit (Depends on the value specified by <i>unit</i> .) |
|------------|--------------------------------------------------------|
| 0.01       | dBm, dB                                                |
| 0.001      | W                                                      |

## ■ Use example

Reads out the average RF power in dBm units.

<Program>

DSPL PWRMTR

POWER? DBM

<Response>

-1.43

# POWER\_CCDF

## **■** Function

Power for CCDF

Outputs Power at CCDF screen.

# ■ Syntax

| Program Message | Query Message | Response Message |  |
|-----------------|---------------|------------------|--|
|                 | POWER_CCDF?   | a,b,c,d,e        |  |

#### ■ Parameter

a,b,c,d,e

The list below shows each value of a,b,c,d,e and resolution.

| Value | Measured result                                      | Resolution | Unit |
|-------|------------------------------------------------------|------------|------|
| a     | Average Power                                        | 0.01       | dBm  |
| b     | Maximum Power (Absolute value)                       | 0.01       | dBm  |
| c     | Maximum Power (Relative value against average power) | 0.01       | dB   |
| d     | Minimum Power (Absolute value)                       | 0.01       | dBm  |
| e     | Minimum Power (Relative value against average power) | 0.01       | dB   |

## ■ Use example

Reads out the measured results of average Power.

<Program>

DSPL CCDF,CCDF

SWP

POWER\_CCDF?

<Response>

10.53, 20.53, 10.00, 0.53, -10.00

# **PRE**

## ■ Function

Preset

Initializes all the measurement control parameters to be initialized.

This command functions the same as the INI and IP commands.

# ■ Syntax

| Program Message | Query Message | Response Message |  |
|-----------------|---------------|------------------|--|
| PRE             |               |                  |  |

# ■ Parameter

Initializes parameters to be initialized.

<Program>

PRE

# **PREAMP**

#### ■ Function

Pre Ampl

Sets Pre Ampl to On or Off.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| PERAMP on_off   | PREAMP?       | on_off           |

#### ■ Parameter

on\_off

On or Off setting of Pre Ampl

| Value | Pre Ampl              | Initial Value |
|-------|-----------------------|---------------|
| ON    | Sets Pre Ampl to On.  |               |
| OFF   | Sets Pre Ampl to Off. | *             |

#### ■ Restrictions

- When Spurious Emission measurement starts while the pre-amplifier is On, the pre-amplifier is forcibly set to Off.
- This setting is possible only when Carrier Frequency is 3 GHz or higher.
- This setting is not enabled when Terminal is IQ.

#### ■ Initialization command

\*RST

## ■ Use example

Sets Pre Ampl to On.

<Program>

PREAMP ON

PREAMP?

<Response>

ON

# ■ Restrictions according to model type and options

If option MS268\*A-08/MS860\*A-08 is not installed, this command is invalid.

# PRMBL\_SRCH

#### **■** Function

Preamble Search

Detects burst rising by the preamble information.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| PRMBL_SRCH a    | PRMBL_SRCH?   | a                |

## ■ Parameter

а

## On/Off

| Value | Description                                       | Initial value |
|-------|---------------------------------------------------|---------------|
| OFF   | Detects burst rising by the level change.         | *             |
| ON    | Detects burst rising by the preamble information. |               |

## ■ Restrictions

• This command is invalid when Measuring Object is set to Continuous.

# ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets Preamble Search to On.

<Program>

MEASOBJ BURST

DSPL RFPWR

PRMBL SRCH ON

PRMBL\_SRCH?

<Response>

ON

# PROBPWR\_CCDF

# ■ Function

Power at Specified Probability for CCDF

Outputs Power deviation for the specified probability on CCDF screen.

# ■ Syntax

| Program Message | Query Message | Response Message  |
|-----------------|---------------|-------------------|
|                 | PROBPWR_CCDF? | a1,a2,a3,a4,a5,a6 |

#### ■ Parameter

а

Value of a

| Resolution | Unit |
|------------|------|
| 0.1        | dB   |

Outputs results in order of 10, 1, 0.1, 0.01, 0.001, and 0.0001%.

Outputs "\*\*\*" when the corresponding Power is absent.

## ■ Use example

Outputs the measured results of Power deviation.

<Program>

 ${\tt DSPL\ CCDF, CCDF}$ 

SWP

PROBPWR\_CCDF?

<Response>

2.3,4.5,5.6,6.8,\*\*\*,\*\*\*

# **PSLTUNE**

#### ■ Function

Pre-selector Tuning

Tunes pre-selector.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| PSLTUNE         |               |                  |

## ■ Restrictions

- This command cannot be executed when the measurement screen is Setup Common Parameter (cf. DSPL).
- This command is enabled when Terminal is RF and frequency is 3.201 GHz or higher (cf. TERM, FREQ).

## ■ Use example

Tunes pre-selector.

<Program>

FREQ 5250000000

 $\operatorname{DSPL}\operatorname{RFPWR}$ 

**PSLTUNE** 

#### ■ Note

• The instrument will be in a non-calibrated status if the power is turned on or initialization process is performed.

# **PVECTERR**

#### **■** Function

Peak EVM

Outputs the measured result for the EVM maximum instantaneous value at Modulation Analysis measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |  |
|-----------------|---------------|------------------|--|
|                 | PVECTERR? mod | pevm             |  |

#### ■ Parameter

mod

Modulation

| Resolution | Modulation       |
|------------|------------------|
| BPSK       | BPSK modulation  |
| QPSK       | QPSK modulation  |
| 16QAM      | 16QAM modulation |
| 64QAM      | 64QAM modulation |
| TOTAL      | Every modulation |

## pevm

#### Peak EVM

| Resolution | Unit |
|------------|------|
| 0.01       | %    |

#### ■ Restrictions

• A setup of mod(modulation) is enabled only when Target System is HiSWANa and Data Rate is Auto.

## ■ Use example

Reads out the peak EVM value.

<Program>

DSPL MODANAL

SWP

PVECTERR?

<Response>

# **PWRCAL**

#### ■ Function

Power Calibration

"PWRCAL" performs calibration in power measurement, and "PWRCAL?" reads out the calibration value. "CALVAL" enables setting of the calibration value just using external control.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| PWRCAL          | PWRCAL?       | cal              |

#### ■ Parameter

cal

Calibration value

| Range              | Resolution | Initial value | Unit |
|--------------------|------------|---------------|------|
| -10.00 to<br>10.00 | 0.01       | 0.00          | dBm  |

#### ■ Restrictions

- This function cannot be executed when the displayed measurement screen is the Setup Common Parameter, Power Meter or IQ Level screen. (cf. DSPL)
- The setting is not enabled when Measuring Object is Burst.
- The setting is not enabled when Input Terminal is IQ-DC, IQ-AC or IQ-Balance.

#### ■ Use example

Performs calibration in power measurement.

<Program>

CALVAL 2.33

PWRCAL?

**PWRCAL** 

<Response>

# PWRPROB\_CCDF

#### ■ Function

Probability at Specified Power for CCDF Outputs probability for grid on the CCDF screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | PWRPROB_CCDF? | a1,a2,a3,a4,a5   |

#### ■ Parameter

a

Probability in setting power

| Resolution | Unit |
|------------|------|
| 0.0001     | %    |

Outputs the results in ascending order of grid value.

Outputs "\*\*\*" when the corresponding Power is absent.

| Horizontal Scale (cf. HSCALE_CCDF) | Grid value to be read |        |        |        |                 |
|------------------------------------|-----------------------|--------|--------|--------|-----------------|
| 2 dB                               | 0.4 dB                | 0.8 dB | 1.2 dB | 1.6 dB | $2~\mathrm{dB}$ |
| 5 dB                               | 1 dB                  | 2 dB   | 3 dB   | 4 dB   | $5~\mathrm{dB}$ |
| 10 dB                              | 2 dB                  | 4 dB   | 6 dB   | 8 dB   | 10 dB           |
| 20 dB                              | 4 dB                  | 8 dB   | 12 dB  | 16 dB  | 20 dB           |
| 50 dB                              | 10 dB                 | 20 dB  | 30 dB  | 40 dB  | 50 dB           |

Read out grid data on the minus side only when Trace Format is Negative.

# ■ Use example

Reads out the measured results of probability for grid.

<Program>

 ${\tt DSPL\ CCDF, CCDF}$ 

**SWP** 

PWRPROB\_CCDF?

<Response>

50.1234,12.2345,7.1234,3.2345,\*\*\*

# **PWRTIME**

#### **■** Function

Power vs. Time

Outputs the measured results of Power for each time period at RF Power measurement.

# ■ Syntax

| Program Message | Query Message   | Response Message                     |
|-----------------|-----------------|--------------------------------------|
|                 | PWRTIME? addr,n | pwr(addr),pwr(addr+1),,pwr(addr+n-1) |

#### ■ Parameter

addr

Data read start address

| Value      | Resolution |
|------------|------------|
| 0 to 55279 | 1          |

n

Data read count

| Value      | Resolution |
|------------|------------|
| 1 to 55280 | 1          |

pwr(addr)

Result at address addr

| Value Resolution  |   | Output Unit                            |
|-------------------|---|----------------------------------------|
| -32678 to $32767$ | 1 | Unit selected in Unit (cf. UNIT_RFPWR) |

# ■ Data storage method

| Address     | 0     | 1     | <br>55278  | 55279  |
|-------------|-------|-------|------------|--------|
| Time (µsec) | -20.0 | -19.9 | <br>5507.8 | 5507.9 |

## ■ Use example

Reads five Power waveforms from memory address 100.

<Program>

DSPL RFPWR

UNIT\_RFPWR DBM

SWP

**PWRTIME?** 100,5

<Response>

$$-12.23, -12.34, -10.24, -9.78, -11.56$$

#### ■ Note

Output data have a semicolon (;) added as a separator after every 5.000th data item if more than 5,000 data items in ASCII format are read out.

For example, the following shows a response message when 10,000 data items are read out:

data1, data2, data3, ..., data4999, data5000; data5001, data5002, ..., data9999, data10000

Note that a semicolon (;), not a comma (,), is inserted between data5000 and data5001.

# **QCONST**

#### ■ Function

# Q Constellation

Reads out the constellation data of Q signal on the Modulation Analysis screen.

# ■ Syntax

| Program Message | Query Message      | Response Message                        |
|-----------------|--------------------|-----------------------------------------|
|                 | QCONST? addr,n,mod | data(addr),data(addr+1),,data(addr+n-1) |
|                 | QCONST? EYE,addr,n | data(addr),data(addr+1),,data(addr+n-1) |

#### ■ Parameter

addr

Starting address to read out data

| Target System                           | Value      |
|-----------------------------------------|------------|
| Other than the below                    | 0 to 71083 |
| IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) | 0 to 4095  |

n

Number of data reading

| Target System                           | Value      |
|-----------------------------------------|------------|
| Other than the below                    | 1 to 71084 |
| IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) | 1 to 4096  |

#### mod

## Modulation

| Value | Modulation       |
|-------|------------------|
| BPSK  | BPSK modulation  |
| QPSK  | QPSK modulation  |
| 16QAM | 16QAM modulation |
| 64QAM | 64QAM modulation |

# data(addr)

Starting address to read out data

| otar ting address to read out data |            |  |  |  |
|------------------------------------|------------|--|--|--|
| Value                              | Resolution |  |  |  |
| -32768 to $32767$                  | 1          |  |  |  |

 $\bullet~$  Sets in an integer of 0.001 unit so that an ideal signal "1" is 1000.

#### ■ Data storage method

Target System:IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM), IEEE802.11g (DSSS-OFDM)

| Address            | 0   | 1   |   | 51 | 52  |   | 103 | <br>71083 |
|--------------------|-----|-----|---|----|-----|---|-----|-----------|
| Symbol number      |     | -   | 1 |    |     | 2 |     | <br>1367  |
| Sub-carrier number | -26 | -25 |   | 26 | -26 |   | 26  | <br>26    |

Target System: IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) (Constellation data)

| Address     | 0 | 1 | - | 4095 |
|-------------|---|---|---|------|
| Chip Number | 0 | 1 |   | 4095 |

Target System: IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK) (Eye Diagram data)

| Address     | 0   | 1   | <br>40950  |
|-------------|-----|-----|------------|
| Chip Number | 0.0 | 0.1 | <br>4095.0 |

#### ■ Use example

Reads out 5 constellation data of Q signal from memory address 0.

<Program>

MEAS MODANAL

QCONST? 0,5

<Response>

1234, 2345, 1357, 2579, 1496

#### ■ Note

•Output data have a semicolon (;) added as a separator after every 5.000th data item if more than 5,000 data items in ASCII format are read out.

For example, the following shows a response message when 10,000 data items are read out:

data1,data2,data3,...,data4999,data5000;data5001,data5002,...,data9999,data10000

Note that a semicolon (;), not a comma (,), is inserted between data5000 and data5001.

·A setup of mod(modulation) is enabled only when Target System is HiSWANa and Data Rate is Auto.

# **QLVL**

## **■** Function

Q Level (RMS)

Reads out the measured results of the RMS value for the Q signal on the IQ Level screen.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | QLVL? unit    | rms              |

## ■ Parameter

unit

Readout unit

| Value | Readout unit     |
|-------|------------------|
| None  | Current set unit |
| MV    | mV               |
| DBMV  | dBmV             |

#### rms

RMS value for  $\underline{Q}$  signal

| Resolution | Unit                                    |
|------------|-----------------------------------------|
| 0.01       | Depends on the value specified by unit. |

# ■ Use example

Reads out the Q Level (RMS) value

<Program>

TERM IQAC

MEAS IQLVL

QLVL? MV

<Response>

# **QPPLVL**

## **■** Function

Q Level (Peak to Peak)

Reads out the measured results of the peak-to-peak value for the Q signal on the IQ Level screen.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | QPPLVL? unit  | pp               |

## ■ Parameter

unit

Readout unit

| Value | Readout unit     |  |
|-------|------------------|--|
| None  | Current set unit |  |
| MV    | mV               |  |
| DBMV  | dBmV             |  |

#### pp

Peak-to-Peak value for Q signal

| Resolution | Unit                                            |
|------------|-------------------------------------------------|
| 0.01       | Depends on the value specified by <i>unit</i> . |

# ■ Use example

Reads out the Q Level (peak to peak) value

<Program>

TERM IQAC

MEAS IQLVL

QPPLVL? MV

<Response>

# **RATIO**

#### ■ Function

On/Off ratio

Outputs ratio between transmit power and the average power when transmission is OFF at RF Power measurement.

# ■ Syntax

| Program Message | sage Query Message Response M |       |
|-----------------|-------------------------------|-------|
|                 | RATIO?                        | ratio |

## ■ Parameter

ratio

On/Off ratio

| Resolution | Unit |
|------------|------|
| 0.01       | dB   |

# ■ Use example

Reads measured result of On/Off ratio.

<Program>

MEAS RFPWR

RATIO?

<Response>

# RBD\_ADJ

#### ■ Function

RBW Mode: Normal/Digital for Adjacent Channel Power

Sets the RBW Type setting for Spectrum Analyzer to analog (Normal) or digital (Digital) at Adjacent Channel Power measurement.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RBD_ADJ type    | RBD_ADJ?      | type             |

#### ■ Parameter

type

Filter selection

| Value | Filter Selection                                     | Initial value |
|-------|------------------------------------------------------|---------------|
| NRM   | Performs the measurement with the analog RBW filter  | *             |
| DGTL  | Performs the measurement with the digital RBW filter |               |

#### ■ Initialization command

PRE

INI

IP

\*RST

#### ■ Use example

Sets RBW Type to Digital at Adjacent Channel Power measurement.

<Program>

 $\mathrm{DSPL}\,\mathrm{ADJ}$ 

RBD ADJ DGTL

RBD\_ADJ?

<Response>

DGTL

# ■ Note

This function is an option. RBW Type is set to Normal when the option is not mounted.

# RBD\_OBW

#### ■ Function

RBW Mode: Normal/Digital for Occupied Bandwidth

Sets the RBW Type setting for Spectrum Analyzer to analog (Normal) or digital (Digital) at Occupied Bandwidth measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RBD_OBW type    | RBD_OBW?      | type             |

#### ■ Parameter

type

Filter selection

| Value | Filter Selection                                     | Initial value |
|-------|------------------------------------------------------|---------------|
| NRM   | Performs the measurement with the analog RBW filter  | *             |
| DGTL  | Performs the measurement with the digital RBW filter |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets RBW Type to Digital at Occupied Bandwidth measurement.

<Program>

DSPL OBW

RBD OBW DGTL

RBD\_OBW?

<Response>

DGTL

#### ■ Note

This function is an option. RBW Type is set to Normal when the option is not mounted.

# RBD\_SMASK

#### ■ Function

RBW Mode: Normal/Digital for Spectrum Mask

Sets the RBW Type setting for Spectrum Analyzer to analog (Normal) or digital (Digital) at Spectrum Mask measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RBD_SMASK type  | RBD_SMASK?    | type             |

#### ■ Parameter

type

Filter selection

| Value | Filter Selection                                     | Initial value |
|-------|------------------------------------------------------|---------------|
| NRM   | Performs the measurement with the analog RBW filter  | *             |
| DGTL  | Performs the measurement with the digital RBW filter |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets RBW Type to Digital at Spectrum Mask measurement.

<Program>

DSPL SMASK

 $RBD\_SMASK\ DGTL$ 

RBD\_SMASK?

<Response>

DGTL

#### ■ Note

This function is an option. RBW Type is set to Normal when the option is not mounted.

# RBW\_ADJ

#### ■ Function

Select Resolution Bandwidth for Adjacent Channel Power Sets RBW for Spectrum Analyzer at Adjacent Channel Power measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RBW_ADJ $f$     | RBW_ADJ?      | f                |

#### ■ Parameter

f

## RBW

| RBW Type | Range              | Resolution | Unit       | Initial value |
|----------|--------------------|------------|------------|---------------|
| Normal   | 300 to<br>20000000 | 1          | Hz         | 30000         |
| Digital  | 10 to 1000000      | 1          | $_{ m Hz}$ | 30000         |

☐ Suffix code

None: Hz HZ: Hz

KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

## ■ Restrictions

• Although any value within the setting range can be input, the actual value is set according to the following list.

| RBW Type | Setting value                                                                               |
|----------|---------------------------------------------------------------------------------------------|
| Normal   | 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz, 300 kHz, 1 MHz, 3 MHz, 5 MHz, 10 MHz, 20 MHz |
| Digital  | 10 Hz, 30 Hz, 100 Hz, 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz, 300 kHz, 1 MHz         |

#### ■ Initialization command

PRE

INI

IΡ

\*RST

# ■ Use example

Sets RBW to 30 kHz at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

RBW\_ADJ  $30 \mathrm{KHZ}$ 

RBW\_ADJ?

<Response>

30000

# RBW\_CCDF

#### **■** Function

Select Resolution Bandwidth for CCDF Selects the digital filter for filtering on the CCDF screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RBW_CCDF type   | RBW_CCDF?     | type             |

#### ■ Parameter

type

Filter selection

| Value                                  | Filter Selection                                | Initial Value |
|----------------------------------------|-------------------------------------------------|---------------|
| 3 MHz, 5 MHz,10 MHz,<br>20 MHz, 22 MHz | Uses RBW of type value                          | 5 MHz         |
| RRC                                    | Uses RRC filter ( $\alpha = 0.22$ ) of 3.84 MHz |               |
| RC                                     | Uses RC filter ( $\alpha = 0.22$ ) of 3.84 MHz  |               |

☐ Suffix code

None: Hz HZ: Hz

KHZ, KZ: kHz MHZ, MZ: MHz

## ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets RBW to 20 MHz.

<Program>

DSPL CCDF,CCDF

RBW\_CCDF? 20MHZ

RBW\_CCDF?

<Response>

20MHZ

# **RBW\_OBW**

#### ■ Function

Select Resolution Bandwidth for Occupied Bandwidth
Sets RBW for Spectrum Analyzer at Occupied Bandwidth measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RBW_OBW f       | RBW_OBW?      | f                |

#### ■ Parameter

f

## RBW

| RBW Type | Range              | Resolution | Unit       | Initial value |
|----------|--------------------|------------|------------|---------------|
| Normal   | 300 to<br>20000000 | 1          | Hz         | 30000         |
| Digital  | 10 to 1000000      | 1          | $_{ m Hz}$ | 30000         |

☐ Suffix code

None: Hz HZ: Hz

KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

## ■ Restrictions

• Although any value within the setting range can be input, the actual value is set according to the following list.

| RBW Type | Setting value                                                                               |
|----------|---------------------------------------------------------------------------------------------|
| Normal   | 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz, 300 kHz, 1 MHz, 3 MHz, 5 MHz, 10 MHz, 20 MHz |
| Digital  | 10 Hz, 30 Hz, 100 Hz, 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz, 300 kHz, 1 MHz         |

#### ■ Initialization command

PRE

INI

IΡ

\*RST

# ■ Use example

Sets RBW to 30 kHz at Occupied Bandwidth measurement.

<Program>

DSPL OBW

RBW\_OBW  $30 \mathrm{KHZ}$ 

RBW\_OBW?

<Response>

30000

## **RBW\_SMASK**

#### ■ Function

Select Resolution Bandwidth for Spectrum Mask Sets RBW for Spectrum Analyzer at Spectrum Mask measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| $RBW\_SMASK f$  | RBW_SMASK?    | f                |

#### ■ Parameter

f

### RBW

| RBW Type | Range              | Resolution | Unit       | Initial value |
|----------|--------------------|------------|------------|---------------|
| Normal   | 300 to<br>20000000 | 1          | Hz         | 30000         |
| Digital  | 10 to 1000000      | 1          | $_{ m Hz}$ | 30000         |

☐ Suffix code

None: Hz HZ: Hz

KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

### ■ Restrictions

• Although any value within the setting range can be input, the actual value is set according to the following list.

| RBW Type | Setting value                                                                               |
|----------|---------------------------------------------------------------------------------------------|
| Normal   | 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz, 300 kHz, 1 MHz, 3 MHz, 5 MHz, 10 MHz, 20 MHz |
| Digital  | 10 Hz, 30 Hz, 100 Hz, 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz, 300 kHz, 1 MHz         |

#### ■ Initialization command

PRE

INI

IΡ

\*RST

## ■ Use example

Sets RBW to 30 kHz at Spectrum Mask measurement.

<Program>

DSPL SMASK

RBW\_SMASK 30KHZ

RBW\_SMASK?

<Response>

30000

## REFTR\_CCDF

#### **■** Function

Select Reference Trace for CCDF

Selects the waveform additionally displayed on the CCDF screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| REFTR_CCDF ref  | REFTR_CCDF?   | ref              |

#### ■ Parameter

ref

Selection for waveform

| Value     | Selection for waveform                                       | Initial value |
|-----------|--------------------------------------------------------------|---------------|
| OFF       | Sets only the measured waveform                              | *             |
| SAVE      | Displays Trace set in Save Reference Trace (cf. SAVETR_CCDF) |               |
| GAUSS     | Displays Gaussian Trace                                      |               |
| SAVEGAUSS | Displays Save Trace and Gaussian Trace.                      |               |

### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Displays Save Trace.

<Program>

DSPL CCDF,CCDF

 ${\tt REFTR\_CCDF?} \; {\tt SAVE}$ 

REFTR\_CCDF?

<Response>

SAVE

## **RFINPUT**

### ■ Function

RF Input

Sets the RF signal input connector.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RFINPUT a       | RFINPUT?      | a                |

#### ■ Parameter

a

RF connector

| а    | RF connector     | Initial value |
|------|------------------|---------------|
| HIGH | High Power input | *             |
| LOW  | Low Power input  |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets RF connector to High Power input.

<Program>

RFINPUT HIGH

RFINPUT?

<Response>

HIGH

## **RFLVL**

#### **■** Function

Reference Level

Sets the Reference Level.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RFLVL rflevel   | RFLVL?        | rflevel          |

#### ■ Parameter

rflevel

Reference Level

| Mod       | el      | PREAMP | Range                                   | Initial value | Resolution | Unit  |
|-----------|---------|--------|-----------------------------------------|---------------|------------|-------|
| MS2681A   |         | On     | (-46.00 + offset) to $(26.00 + offset)$ | 10            | 0.01       | dBm   |
| W15268    | 51A     | Off    | (-26.00 + offset) to $(26.00 + offset)$ | 10            | 0.01       | авт   |
| MS268     | 29 A    | On     | (-46.00+offset) to (26.00+offset)       | 10            | 0.01       | dBm   |
| W15200    | БЭА     | Off    | (-26.00 + offset) to $(26.00 + offset)$ | 10            |            |       |
| MS2687A/N | IS2687B | Off    | (-26.00 + offset)  to  (24.00 + offset) | 6             | 0.01       | dBm   |
|           | High    | On     | (-26.00 + offset)  to  (38.00 + offset) |               | 0.01       | dBm   |
| MS8608A   | input   | Off    | (-6.00+offset) to $(38.00+offset)$      | 10            |            |       |
| MSOOOA    | Low     | On     | (-46.00 + offset)  to  (18.00 + offset) | 10            |            |       |
|           | input   | Off    | (-26.00 + offset) to $(18.00 + offset)$ |               |            |       |
| MS8609A   |         | On     | (-46.00 + offset)  to  (18.00 + offset) | 10            | 0.01       | dBm   |
| Moon      | JJA     | Off    | (-26.00 + offset)  to  (18.00 + offset) | 10            | 0.01       | uDIII |

• offset represents the value set for the reference level offset (cf. RFVLOFS).

□ Suffix code None: dBm DBM: dBm

### ■ Initial command

• This setting is not possible when Terminal is other than RF (cf. TERM).

### ■ Initialization command

PRE

INI

ΙP

\*RST

### ■ Use example

Sets the Reference Level to –10 dBm.

<Program>

TERM RF

RFLVLOFS 0

RFLVL-10

RFLVL?

<Response>

## **RFLVLOFS**

#### **■** Function

Reference Level Offset

Sets the Reference Level Offset.

### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RFLVLOFS offset | RFLVLOFS?     | offset           |

#### ■ Parameter

offset

Reference Level Offset

| Range           | Resolution | Initial value | Unit |
|-----------------|------------|---------------|------|
| -99.99 to 99.99 | 0.01       | 0.00          | dB   |

### ☐ Suffix code

None: dB DB: dB

### ■ Restrictions

• This setting is not possible when Terminal is other than RF (*cf.* TERM).

#### ■ Initialization command

PRE

INI

IP \*RST

Sets the Reference Level Offset to 0 dB.

<Program>

■ Use example

TERM RF

RFLVLOFS 0.00

RFLVLOFS?

<Response>

0.00

# RL\_ADJ

#### **■** Function

Reference Level for Adjacent Channel Power

Sets Reference Level at Adjacent Channel Power measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RL_ADJ rflevel  | RL_ADJ?       | rflevel          |

#### ■ Parameter

rflevel

Reference Level

| Model name           | Pre ampl | Range              | Initial value | Resolution | Unit |
|----------------------|----------|--------------------|---------------|------------|------|
| MS2687A/MS2687B      |          | -120.00 to $40.00$ | 20.00         | 0.01       | dBm  |
| Other than the above | None     | -120.00 to 40.00   | 20.00         | 0.01       | dBm  |
| Other than the above | Provided | -140.00 to 20.00   | 20.00         | 0.01       | dBm  |

☐ Suffix code

None: dBm DBM: dBm

### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets Reference Level to -10 dBm at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

 $RL\_ADJ\!-\!10$ 

RL\_ADJ?

<Response>

## **RL\_OBW**

### **■** Function

Reference Level for Occupied Bandwidth

Sets Reference Level at Occupied Bandwidth measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RL_OBW rflevel  | RL_OBW?       | rflevel          |

#### ■ Parameter

rflevel

Reference Level

| Model name           | Pre ampl | Range              | Initial value | Resolution | Unit |
|----------------------|----------|--------------------|---------------|------------|------|
| MS2687A/MS2687B      |          | -120.00 to $40.00$ | 20.00         | 0.01       | dBm  |
| Other than the above | None     | -120.00 to 40.00   | 20.00         | 0.01       | dBm  |
| Other than the above | Provided | -140.00 to 20.00   | 20.00         | 0.01       | dBm  |

☐ Suffix code

None: dBm DBM: dBm

### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets Reference Level to -10 dBm at Occupied Bandwidth measurement.

<Program>

DSPL OBW

 $RL\_OBW\!-\!10$ 

RL\_OBW?

<Response>

## **RL\_SMASK**

### **■** Function

Reference Level for Spectrum Mask

Sets Reference Level at Spectrum Mask measurement.

## ■ Syntax

| Program Message  | Query Message | Response Message |
|------------------|---------------|------------------|
| RL_SMASK rflevel | RL_SMASK?     | rflevel          |

#### ■ Parameter

rflevel

Reference Level

| Model name           | Pre ampl | Range              | Initial value | Resolution | Unit |
|----------------------|----------|--------------------|---------------|------------|------|
| MS2687A/MS2687B      |          | -120.00 to $40.00$ | 20.00         | 0.01       | dBm  |
| Other than the above | None     | -120.00 to 40.00   | 20.00         | 0.01       | dBm  |
| Other than the above | Provided | -140.00 to 20.00   | 20.00         | 0.01       | dBm  |

☐ Suffix code

None: dBm DBM: dBm

### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets Reference Level to -10 dBm at Spectrum Mask measurement.

<Program>

DSPL SMASK

 $RL\_SMASK-10$ 

 $RL\_SMASK?$ 

<Response>

## **RMPDET**

#### **■** Function

Ramp Down Detection

Detects burst falling automatically.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RMPDET a        | RMPDET?       | a                |

### ■ Parameter

а

## On/Off

| Value | State                                                                                                                        | Initial value |
|-------|------------------------------------------------------------------------------------------------------------------------------|---------------|
| OFF   | Sets the burst length and performs the measurement at RF Power measurement.                                                  | *             |
| ON    | Detects burst falling automatically and performs the measurement while recognizing the burst length at RF Power measurement. |               |

### ■ Restrictions

• This command is invalid when Measuring Object is set to Continuous.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets Ramp Down Detection to On.

<Program>

MEASOBJ BURST

DSPL RFPWR

RMPDET ON

RMPDET?

<Response>

ON

#### ■ Function

Increases or decreases the measurement range for the power meter.

### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RNG up_down     |               |                  |

#### ■ Parameter

up\_down

Operation of power meter range

| Value | Operation of Power Meter Range               |  |
|-------|----------------------------------------------|--|
| UP    | Increases the measurement range by one step. |  |
| DN    | Decreases the measurement range by one step. |  |

- Transmitting the RNG UP command does not change the range when the range is set to maximum.
- Transmitting the RNG DN command does not change the range when the range is set to minimum.

### ■ Restrictions

• This function can be executed only when the displayed measurement screen is the Power Meter screen. (cf. DSPL)

### ■ Use example

Increases the range by one step.

<Program>

RNG UP

#### ■ Function

Sets the measurement range for the power meter to the minimum level. The range value is set to 0 dBm or -20 dBm when the Input RF level is set to MS8608A High power or MS8608A Low power/MS8609A, respectively.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RNG1            |               |                  |

#### ■ Restrictions

• This function can be executed only when the displayed measurement screen is the Power Meter screen. (cf. DSPL)

#### ■ Use example

Sets the measurement range for the power meter to the minimum level.

<Program>

#### ■ Function

Sets the measurement range for the power meter to the second lowest level. The range value is set to +10 dBm or -10 dBm when the Input RF level is set to MS8608A High power or MS8608A Low power/MS8609A, respectively.

### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RNG2            |               |                  |

#### ■ Restrictions

• This function can be executed only when the displayed measurement screen is the Power Meter screen. (cf. DSPL)

### ■ Use example

Sets the measurement range for the power meter to the second lowest level.

<Program>

#### ■ Function

Sets the measurement range for the power meter to the intermediate level. The range value is set to +20 dBm or 0 dBm when the Input RF level is set to MS8608A High power or MS8608A Low power/MS8609A, respectively.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RNG3            |               |                  |

#### ■ Restrictions

• This function can be executed only when the displayed measurement screen is the Power Meter screen. (cf. DSPL)

#### ■ Use example

Sets the measurement range of the power meter to the intermediate level.

<Program>

#### ■ Function

Sets the measurement range for the power meter to the fourth lowest level. The range value is set to +30 dBm or +10 dBm when the Input RF level is set to MS8608A High Power or MS8608A Low power/MS8609A, respectively.

### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RNG4            |               |                  |

#### ■ Restrictions

• This function can be executed only when the displayed measurement screen is the Power Meter screen. (cf. DSPL)

### ■ Use example

Sets the measurement range for the power meter to the fourth lowest level.

<Program>

#### ■ Function

Sets the measurement range for the power meter to the maximum level. The range value is set to +40 dBm or +20 dBm when the Input RF level is set to MS8608A High power or MS8608A Low power/MS8609A, respectively.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| RNG5            |               |                  |

#### ■ Restrictions

• This function can be executed only when the displayed measurement screen is the Power Meter screen. (cf. DSPL)

#### ■ Use example

Sets the measurement range for the power meter to the maximum level.

<Program>

## **ROLLOFF**

#### **■** Function

Roll Off Factor

Sets the roll off factor of the root raised cosine filter to be used for IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) measurement.

#### ■ Syntax

| Program Message  | Query Message | Response Message |
|------------------|---------------|------------------|
| ROLLOFF $\alpha$ | ROLLOFF?      | α                |

#### ■ Parameter

 $\alpha$ 

Roll off factor

| Value        | State | Initial value |
|--------------|-------|---------------|
| 0.30 to 1.00 | 0.01  | 0.50          |

#### ■ Restrictions

• This command is enabled only when Target System is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) and Filter Type is Root Raised Cosine filter (*cf.* TGTSY, FILTER).

### ■ Use example

Sets the roll off factor to 0.70.

<Program>

TGTSY 11B

FILTER RRC

ROLLOFF 0.70

ROLLOFF?

<Response>

0.70

## **RSLTANALYLEN**

#### **■** Function

Analysis Length for Modulation Analysis

Outputs the length of the analyzed signals in the Modulation Analysis screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | RSLTANALYLEN? | a                |

#### ■ Parameter

а

Signal length

| Target System                                           | Resolution | Unit        |
|---------------------------------------------------------|------------|-------------|
| Other than IEEE802.11b or IEEE802.11g<br>(ERP-DSSS/CCK) | 1          | OFDM symbol |
| IEEE802.11b, IEEE802.11g (ERP-DSSS/CCK)                 | 1          | chip        |

#### ■ Restrictions

• When the data rate is set to other than Auto, a value set in Analysis Length is returned.

### ■ Use example

Reads out the signal length.

<Program>

TGTSY11A

DATRATE AUTO

MEAS MODANAL

RSLTANALYLEN?

<Response>

10

## **RSLTMODTYPE**

#### ■ Function

Modulation Type for Modulation Analysis

Reads out the modulation type of the analyzed signals in the Modulation Analysis screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | RSLTMODTYPE?  | а                |

#### ■ Parameter

а

Modulation type

|   | IEEE802.11a | HiperLAN2 | HiSWANa | IEEE802.11b | IEEE802.11g<br>(ERP-DSSS/<br>CCK) | IEEE802.11g<br>(ERP-OFDM) | IEEE802.11g<br>(DSSS-OFDM) |
|---|-------------|-----------|---------|-------------|-----------------------------------|---------------------------|----------------------------|
| a | OFBPSK      | OFBPSK    | OFBPSK  | DBPSK       | DBPSK                             | OFBPSK                    | OFBPSK                     |
|   | OFQPSK      | OFQPSK    | OFQPSK  | DQPSK       | DQPSK                             | OFQPSK                    | OFQPSK                     |
|   | OF16QAM     | OF16QAM   | OF16QAM | CCK5_5M     | CCK5_5M                           | OF16QAM                   | OF16QAM                    |
|   | OF64QAM     | OF64QAM   | OF64QAM | CCK11M      | CCK11M                            | OF64QAM                   | OF64QAM                    |

#### ■ Restrictions

- When the data rate is set to other than Auto, a modulation type set in Modulation is returned.
- When the modulation type is set to HiSWANa and the data rate is set to Auto, this message is invalid.

### ■ Use example

Reads out the modulation type.

<Program>

TGTSY11A

DATRATE AUTO

MEAS MODANAL

RSLTMODTYPE?

<Response>

OF64QAM

## **S1**

#### **■** Function

Continuous Measure/Sweep

Executes a measurement or sweeping continuously.

Accepts a command even during measurement. This command functions the same as the CONTS command.

Stops the current measurement and starts with a new measurement when a measurement execution command, such as CONTS command, is received during measurement.

When an operation command not related to the measurement, for example, the INTPOL command or query message, is received during measurement; the current measurement is continued while responding to the received command.

However, when a measurement-related command is received during measurement, the current measurement is stopped and the command is executed.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| S1              |               |                  |

#### ■ Use example

Continuously executes a measurement or sweeping.

<Program>

S1

## **S2**

#### **■** Function

Single Measure/Sweep

Executes a measurement or sweeping once.

Accepts a command even during measurement.

This command functions the same as the SNGLS command.

Stops the current measurement and starts with a new measurement when a measurement execution command, such as SNGLS command, is received for the second time during measurement.

When an operation command not related to the measurement, for example, the INTPOL command or query message, is received during measurement; the current measurement is continued while responding to the command.

However, when a measurement-related command is received during measurement, the current measurement is stopped and the command is executed.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| S2              |               |                  |

#### ■ Use example

Executes a measurement or sweeping once.

<Program>

S2

## **SAVE2MCARD**

## ■ Function

Save to Memory Card for Batch Measurement

Saves the measured results to a memory card on the Batch screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SAVE2MCARD      |               |                  |

## ■ Use example

Saves the measured results.

<Program>

DSPL BATCH

START\_BCH

SAVE2MCARD

# SAVETR\_CCDF

### ■ Function

Save Reference Trace for CCDF

Saves Reference Trace on the CCDF screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SAVETR_CCDF     | SAVETR_CCDF?  | a                |

#### ■ Parameter

a

Value of a

| Value | State                  |
|-------|------------------------|
| OFF   | Waveform is not saved. |
| ON    | Waveform is saved.     |

## ■ Use example

Saves Reference Trace.

<Program>

DSPL CCDF,CCDF

SAVETR\_CCDF

SAVETR\_CCDF?

<Response>

ON

## **SRERR**

#### **■** Function

Symbol Rate Error

Outputs the Symbol Rate Frequency Error in Symbol Rate Error measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | SRERR?        | a                |

#### ■ Parameter

a

Symbol Rate Frequency Error

| Resolution | Range            | Unit |
|------------|------------------|------|
| 0.1        | -60.0 to $+60.0$ | ppm  |

• "\*\*\*" is displayed when the display range is exceeded or the measured results becomes "Signal abnormal."

### ■ Use example

Outputs the Symbol Rate Frequency Error in Symbol Rate Error measurement.

<Program>

DSPL SRERR

MEAS SRERR

SRERR?

<Response>

## **SETREL**

#### **■** Function

Set Relative level

Sets the power value (displayed on the Power Meter screen) to the reference value for relative value display.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SETREL          |               |                  |

#### ■ Restrictions

• This function can be executed only when the displayed measurement screen is the Power Meter screen. (cf. DSPL)

### ■ Use example

Sets the power value (being displayed) to the reference value for relative value display.

<Program>

SETREL

## SETTBL\_BCH

#### **■** Function

Batch Measurement

Switches the judgement value setting screen and the measurement parameters setting screen (Setup Measure Table) for batch measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SETTBL_BCH mode | SETTBL_BCH?   | mode             |

### ■ Parameter

mode

Target screen

| mode | Screen                                | Initial value |
|------|---------------------------------------|---------------|
| PAR  | Measurement parameters setting screen | *             |
| LMT  | Judgement value setting screen        |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Switches the Setup Measure Table screen to the judgement setting screen for batch measurement.

<Program>

 $DSPL\ SETTBL\_BCH$ 

 ${\tt SETTBL\_BCH\ LMT}$ 

SETTBL\_BCH?

<Response>

LMT

## **SLCTTEMP\_SMASK**

### **■** Function

Select Template for Spectrum Mask

Selects the measurement standard at Spectrum Mask measurement.

## ■ Syntax

| Program Message    | Query Message   | Response Message |
|--------------------|-----------------|------------------|
| SLCTTEMP_SMASK std | SLCTTEMP_SMASK? | std              |

#### ■ Parameter

std

Measurement standard

| Value | Description                          | Initial value |
|-------|--------------------------------------|---------------|
| STD   | Selects the system standard template | *             |
| USER  | Selects the user set template        |               |

#### ■ Initialization command

PRE

INI

IP

\*RST

### ■ Use example

Selects USER as the measurement standard at Spectrum Mask measurement.

<Program>

DSPL SMASK

SLCTTEMP\_SMASK USER

SLCTTEMP\_SMASK?

<Response>

USER

## SLCTTEMP\_SMASK\_BCH

#### **■** Function

Batch Measurement

Selects the standard line of the spectrum mask to be used for judgement on the Setup Measure Table (Batch screen).

## ■ Syntax

| Program Message      | Query Message       | Response Message |
|----------------------|---------------------|------------------|
| SLCTTEMP_SMASK_BCH a | SLCTTEMP_SMASK_BCH? | а                |

#### ■ Parameter

я

Standard Line of Spectrum Mask

| а    | Settings for Spectrum Analyzer                                                           | Initial Value |
|------|------------------------------------------------------------------------------------------|---------------|
| STD  | Judged using the standard line stipulated in the standard selected by the target system. | *             |
| USER | Judged using the user-defined standard line.                                             |               |

#### ■ Initialization command

PRE

INI

IΡ

\*RST

### ■ Use example

Selects the user-defined standard line of the spectrum mask.

<Program>

 $DSPL\ SETTBL\_BCH$ 

SLCTEMP\_SMASK\_BCH USER

SLCTEMP\_SMASK\_BCH?

<Response>

USER

## **SMOFLT**

### ■ Function

Smoothing Filter

Selects whether to smooth waveform at RF Power measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SMOFLT flt      | SMOFLT?       | flt              |

### ■ Parameter

flt: On/Off of waveform smoothing

| Value | On/Off of Waveform Smoothing | Initial Value |
|-------|------------------------------|---------------|
| OFF   | Does not smooth a waveform.  | *             |
| ON    | Smoothes a waveform.         |               |

### ■ Initialization command

PRE

INI

IP

\*RST

## ■ Use example

Smoothes a waveform.

<Program>

DSPL RFPWR

SMOFLT ON

SMOFLT?

<Response>

ON

## **SNGLS**

#### ■ Function

Single Measure/Sweep

Executes a measurement or sweeping once.

Accepts a command even during measurement.

This command functions the same as the S2 command.

Stops the current measurement and starts with a new measurement when a measurement execution command, such as SNGLS command, is received for the second time during measurement.

When an operation command not related to the measurement, for example, the INTPOL command or query message, is received during measurement; the current measurement is continued while responding to the command.

However, when a measurement-related command is received during measurement, the current measurement is stopped and the received command is executed.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SNGLS           |               |                  |

#### ■ Restrictions

• This command is disabled when using Batch Measurement.

## ■ Use example

Executes a measurement or sweeping once.

<Program>

**SNGLS** 

## SPAN\_OBW

#### ■ Function

Frequency Span for Occupied Bandwidth

Sets the sweep frequency span for Spectrum Analyzer at Occupied Bandwidth measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SPAN_OBW        | SPAN_OBW?     | freq             |

#### ■ Parameter

freq

Sweep frequency span

| System                      | Range                 | Resolution | Unit | Initial value |
|-----------------------------|-----------------------|------------|------|---------------|
| IEEE802.11b,<br>IEEE802.11g | 20000000 to 200000000 | 1          | Hz   | 60000000      |
| Other than the above        | 20000000 to 200000000 | 1          | Hz   | 40000000      |

☐ Suffix code

None: Hz HZ: Hz

KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

### ■ Use example

Sets the sweep frequency span for Spectrum Analyzer to 60 MHz at Occupied Bandwidth measurement.

<Program>

DSPL OBW

SPAN\_OBW 60MHZ

SPAN\_OBW?

<Response>

60000000

## SPECT\_ADJALL

#### ■ Function

Spectrum (All) for Adjacent Channel Leakage Power

Reads out the frequency axis sweep waveform when Measure Method is Spectrum (All) on the Adjacent Channel Leakage Power screen.

### ■ Syntax

| Program Message | Query Message      | Response Message       |
|-----------------|--------------------|------------------------|
|                 | SPECT_ADJALL? a, b | c(a), c(a+1),,c(a+b-1) |

#### ■ Parameter

a

Read Out Starting Position

| Data Point | а         | Resolution |
|------------|-----------|------------|
| 1001       | 0 to 1000 | 1          |
| 501        | 0 to 500  | 1          |

b

## Read Out Count

| Data Point | b         | Resolution |
|------------|-----------|------------|
| 1001       | 1 to 1001 | 1          |
| 501        | 1 to 501  | 1          |

c(a)

a-th frequency axis sweep waveform data

| Resolution | Unit |
|------------|------|
| 1          | dB   |

<sup>\*</sup> Output in 0.01 dB units assuming 1 dB = 100

### ■ Use example

Reads out 5 sweep waveforms starting from address 0 when Measure Method is Spectrum (All).

<Program>

DSPL ADJ, SPECT1

SWP

SPECT\_ADJALL? 0,5

<Response>

$$-6345, -6346, -6347, -5346, -5345$$

## SPECT\_ADJSEP

#### **■** Function

Spectrum (Separate) for Adjacent Channel Leakage Power

Reads out the frequency axis sweep waveform when Measure Method is Spectrum (Separate) on the Adjacent Channel Leakage Power screen.

### ■ Syntax

| Program Message | Query Message      | Response Message       |
|-----------------|--------------------|------------------------|
|                 | SPECT_ADJSEP? a, b | c(a), c(a+1),,c(a+b-1) |

#### ■ Parameter

a

Read Out Starting Position

| Data Point | а         | Resolution |
|------------|-----------|------------|
| 1001       | 0 to 5004 | 1          |
| 501        | 0 to 2504 | 1          |

b

## Read Out Count

| Data Point | b         | Resolution |
|------------|-----------|------------|
| 1001       | 1 to 5005 | 1          |
| 501        | 1 to 2505 | 1          |

c(a)

a-th frequency axis sweep waveform data

| Resolution | Unit |
|------------|------|
| 1          | dB   |

<sup>\*</sup> Output in 0.01 dB units assuming 1 dB = 100

### ■ Use example

Reads out 5 sweep waveforms starting from address 0 when Measure Method is Spectrum (Separate).

<Program>

 ${\tt DSPL\,ADJ,SPECT2}$ 

SWP

SPECT\_ADJSEP? 0,5

<Response>

$$-3345, -3346, -3347, -4346, -4345$$

## SPECT\_OBW

#### ■ Function

Spectrum-Occupied Band Width

Reads out the frequency axis sweep waveform on the Occupied Bandwidth screen.

## ■ Syntax

| Program Message | Query Message  | Response Message      |
|-----------------|----------------|-----------------------|
|                 | SPECT_OBW? a,b | c(a),c(a+1),,c(a+b-1) |

#### ■ Parameter

a

Read Out Starting Position

| Data Point | а         | Resolution |
|------------|-----------|------------|
| 1001       | 0 to 1000 | 1          |
| 501        | 0 to 500  | 1          |

b

Read Out Count

| Data Point | b         | Resolution |
|------------|-----------|------------|
| 1001       | 1 to 1001 | 1          |
| 501        | 1 to 501  | 1          |

c(a)

a-th frequency axis sweep waveform data

| Resolution | Unit |
|------------|------|
| 1          | dB   |

<sup>\*</sup> Output in 0.01 dB units assuming 1 dB = 100

### ■ Use example

Reads out 5 sweep waveforms starting from address 0.

<Program>

DSPL OBW

**SWP** 

SPECT\_OBW? 0,5

<Response>

-2345, -2346, -2347, -2346, -2345

## SPECT\_SMASK

### **■** Function

Data for Spectrum Mask

Reads out waveform data for spectrum mask measurement.

## ■ Syntax

| Program Message | Query Message     | Response Message       |
|-----------------|-------------------|------------------------|
|                 | SPECT_SMASK? a, b | c(a), c(a+1),,C(a+b-1) |

### ■ Parameter

я

Read Out Starting Position

| Range     | Resolution |
|-----------|------------|
| 0 to 1000 | 1          |

b

## Read Out Count

| Range     | Resolution |
|-----------|------------|
| 1 to 1001 | 1          |

c(n)

Waveform Data

| Resolution | Unit |
|------------|------|
| 1          | dB   |

Output assuming 1 dB = 100

### ■ Use example

Reads out 5 waveform data starting from 0 at spectrum mask measurement.

<Program>

 $DSPL\ SMASK$ 

SWP

SPECT\_SMASK? 0,5

<Response>

-5128, -5237, -5083, -5283, -4992

# SPECT\_SPUF

#### **■** Function

Spectrum Data for Spurious Emission

Reads out sweep waveform of frequency base for spurious emission.

# ■ Syntax

| Program Message | Query Message         | Response Message       |
|-----------------|-----------------------|------------------------|
|                 | SPECT_SPUF? tbl, a, n | d(a), d(a+1),,d(a+n–1) |

#### ■ Parameter

tbl

Frequency Table

| Value     | Unit |
|-----------|------|
| F1 to F15 | None |

а

Read Out Starting Position

| Value     | Data Point | Resolution |
|-----------|------------|------------|
| 0 to 500  | 501        | 1          |
| 0 to 1000 | 1001       | 1          |

n

Read out count

| Value     | Data Point | Resolution |
|-----------|------------|------------|
| 1 to 501  | 501        | 1          |
| 1 to 1001 | 1001       | 1          |

d(m)

Waveform Data of m Joint

| Resolution | Unit |
|------------|------|
| 1          | dBm  |

Unit is 0.01 dBm (1 dBm = 100)

#### ■ Restrictions

• Effective in sweep or search measurement.

# ■ Use example

Reads out five data from 0 of sweep waveform in frequency table F2 at sweep measurement.

<Program>

DSPL SPURIOUS, SWEEP

SWP

SPECT\_SPUF? F2,0,5

<Response>

-5423, -5832, -5693, -5934, -4924

# SPECT\_SPUT

#### **■** Function

Spectrum Data for Spurious Emission

Reads out sweep waveform of time base for spurious emission.

# ■ Syntax

| Program Message | Query Message         | Response Message       |
|-----------------|-----------------------|------------------------|
|                 | SPECT_SPUT? tbl, a, n | d(a), d(a+1),,d(a+n-1) |

#### ■ Parameter

tbl

Frequency Table

| Value     | Unit |
|-----------|------|
| F1 to F15 | None |

a

Read Out Starting Position

| Value     | Data Point | Resolution |
|-----------|------------|------------|
| 0 to 500  | 501        | 1          |
| 0 to 1000 | 1001       | 1          |

n

Read Out Count

| Value     | Data Point | Resolution |
|-----------|------------|------------|
| 1 to 501  | 501        | 1          |
| 1 to 1001 | 1001       | 1          |

d(m)

Waveform Data of m Joint

| Resolution | Unit |
|------------|------|
| 1          | dBm  |

Unit is 0.01 dBm (1 dBm = 100)

#### ■ Restrictions

• Effective only in spot measurement.

# ■ Use example

Reads out five data from 0 of sweep waveform in frequency table F2 at spot measurement.

<Program>

DSPL SPURIOUS, SPOT

SWP

SPECT\_SPUT? F2,0,5

<Response>

-5423, -5832, -5693, -5934, -4924

# **SPFLAT**

#### **■** Function

Spectrum Flatness

Reads out spectrum flatness of each sub-carrier in the Modulation Analysis screen.

# ■ Syntax

| Program Message | Query Message  | Response Message                        |
|-----------------|----------------|-----------------------------------------|
|                 | SPFLAT? addr,n | data(addr),data(addr+1),,data(addr+n-1) |

#### ■ Parameter

addr

Starting address to read out data

| Value   | Resolution |
|---------|------------|
| 0 to 51 | 1          |

n

Number of data reading

| Value   | Resolution |
|---------|------------|
| 1 to 52 | 1          |

data(addr)

Results of address addr

| Value             | Resolution | Output unit |
|-------------------|------------|-------------|
| -32768 to $32767$ | 1          | 0.01 dB     |

#### ■ Data storage method

| Address            | 0   | 1   | <br>25 | 26 | <br>51 |
|--------------------|-----|-----|--------|----|--------|
| Sub-carrier Number | -26 | -25 | <br>-1 | 1  | <br>26 |

#### ■ Restrictions

• This command is enabled only when Target System is IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) or IEEE802.11g (DSSS-OFDM) while Measuring Object is Burst, and Terminal is RF.

# ■ Use example

Reads out spectrum flatness of five sub-carriers starting from sub-carrier number -26.

<Program>

MEAS MODANAL

SPFLAT? 0,5

<Response>

123,234,135,257,149

# SPRTBL\_BCH

# **■** Function

Batch Measurement

Selects standards for spurious measurement at batch measurement.

# ■ Syntax

| Program Message   | Query Message   | Response Message |
|-------------------|-----------------|------------------|
| SPRTBL_BCH tbl, n | SPRTBL_BCH? tbl | N                |

### ■ Parameter

tbl

# Spurious Table

| tbl | Table      |
|-----|------------|
| 1   | Spurious 1 |
| 2   | Spurious 2 |

n

#### Spurious Standards

| n  | Standards                                                          |
|----|--------------------------------------------------------------------|
| 0  | TELEC 2.4G Data Communication System Spurious                      |
| 1  | TELEC 2.4G Data Communication System Secondary Emission            |
| 2  | TELEC 5G Wireless Access 5.03 GHz Band Spurious & Out-Band Leakage |
| 3  | TELEC 5G Wireless Access 4.9 GHz Band Spurious & Out-Band Leakage  |
| 4  | TELEC 5G Wireless Access Secondary Emission                        |
| 5  | TELEC 5G Data Communication System Spurious                        |
| 6  | TELEC 5G Data Communication System Out-Band Leakage                |
| 7  | TELEC 5G Data Communication System Secondary Emission              |
| 8  | ETSI TS101 475 (HiperLAN2) Signal ON                               |
| 9  | ETSI TS101 475 (HiperLAN2) Signal OFF                              |
| 10 | FCC 15.407 5.15-5.25 Band                                          |
| 11 | FCC 15.407 5.25-5.35 Band                                          |
| 12 | FCC 15.407 5.725-5.825 Band                                        |
| 13 | FCC 15.247 2.4 GHz Band                                            |
| 14 | TELEC 2.4G Data Communication System (14CH) Spurious               |
| 98 | Spot Table                                                         |
| 99 | Does not execute measurement                                       |

#### Initial Value

|                | Initial Value            |                                       |  |
|----------------|--------------------------|---------------------------------------|--|
| Spurious Table | IEEE802.11b, IEEE802.11g | Other than IEEE802.11b or IEEE802.11g |  |
| Spurious 1     | 0                        | 5                                     |  |
| Spurious 2     | 99                       | 99                                    |  |

#### ■ Restrictions

• Select different standards for Spurious 1 and Spurious 2 tables.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets Spot Table to Spurious 2 for batch measurement.

<Program>

 $DSPL\ SETTBL\_BCH$ 

SPRTBL\_BCH 2, 98

SPRTBL\_BCH? 2

<Response>

98

# **SPUALL**

#### **■** Function

Spurious Frequency, Level and Judgement for Spurious Emission

Reads out measured spurious frequency, level, and setting value for spurious emission in same time.

# ■ Syntax

| Program Message | Query Message   | Response Message                                                                                                                                                                       |
|-----------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 | SPUALL? a, n, u | f(a), I(a), r(a), v(a), t(a), rI(a), at(a),<br>f(a+1), I(a+1), r(a+1), v(a+1), t(a+1), rI(a+1), at(a+1),<br>,f(a+n-1), I(a+n-1), r(a+n-1), v(a+n-1), t(a+n-1),<br>rI(a+n-1), at(a+n-1) |

#### ■ Parameter

а

#### Frequency Table

| Value     | Unit |
|-----------|------|
| F1 to F15 | None |

n

#### Read Out Count

| Value   | Resolution | Unit |
|---------|------------|------|
| 1 to 15 | 1          | None |

и

# Unit

| С     | Unit  |
|-------|-------|
| None  | dBm   |
| DBM   | dBm   |
| DB    | dB    |
| W     | W     |
| W_MHZ | W/MHz |

*f*(*m*)

Spurious Frequency of Frequency Table m

| Resolution | Unit |
|------------|------|
| 1          | Hz   |

#### 1(m)

Spurious Level of Frequency Table m

| Output unit | Resolution           |  |
|-------------|----------------------|--|
| dBm         | 0.01                 |  |
| dB          | 0.01                 |  |
| W           | 1 significant digita |  |
| W/MHz       | 4 significant digits |  |

#### r(m)

# RBW of Frequency Table m

| RBW     | Value                                                                                       |
|---------|---------------------------------------------------------------------------------------------|
| Normal  | 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz, 300 kHz, 1 MHz, 3 MHz, 5 MHz, 10 MHz, 20 MHz |
| Digital | 10 Hz, 30 Hz, 100 Hz, 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz, 300 kHz, 1 MHz         |

#### v(m)

#### VBW of Frequency Table m

| VBW of Frequency Table in                                                                                          |  |
|--------------------------------------------------------------------------------------------------------------------|--|
| Value                                                                                                              |  |
| 0 Hz (OFF), 1 Hz, 3 Hz, 10 Hz, 30 Hz, 100 Hz, 300 Hz, 1 kHz, 3 kHz, 10 kHz, 30 kHz, 100 kHz, 300 kHz, 1 MHz, 3 MHz |  |

# *t(m)*

# Sweep Time of Frequency Table m

| Resolution | Unit |
|------------|------|
| 1          | us   |

#### rl(m)

# Reference Level of Frequency Table m

| Resolution | Unit |
|------------|------|
| 0.01       | dBm  |

# at(m)

# Attenuator of Frequency Table m

| Main frame           | Resolution | Unit |
|----------------------|------------|------|
| MS2687A/MS2687B      | 10         | dB   |
| Other than the Above | 2          | dB   |

# ■ Use example

Reads out spurious frequency, level and setting value of frequency table F2 at spot measurement.

<Program>

DSPL SPURIOUS, SPOT

SWP

SPUALL? F2,1,DBM

<Response>

 $12340000, -12.34,\, 1000000,\, 1000000,\, 10000, -10.00,\, 30$ 

# **SPUFREQ**

# **■** Function

Spurious Frequency for Spurious Emission

Reads out measured spurious frequency for spurious emission.

# ■ Syntax

| Program Message | Query Message | Response Message      |
|-----------------|---------------|-----------------------|
|                 | SPUFREQ? a, n | c(a),c(a+1),,c(a+n-1) |

#### ■ Parameter

я

# Frequency Table

| Value     | Unit |
|-----------|------|
| F1 to F15 | None |

n

#### Read out count

| Value   | Resolution | Unit |
|---------|------------|------|
| 1 to 15 | 1          | None |

c(a)

# Spurious Frequency

| Resolution | Unit       |
|------------|------------|
| 1          | $_{ m Hz}$ |

#### ■ Use example

Reads out spurious frequency of F1 to F4 at spot measurement.

<Program>

DSPL SPURIOUS, SPOT

SWP

SPUFREQ? F1, 4

### <Response>

 $1102000000,\,4176200000,\,6722620000,\,7716100000$ 

# SPUFREQ\_BCH

#### **■** Function

Spurious Frequency for Batch

Reads out measured spurious frequency on the Batch screen.

# ■ Syntax

| Program Message | Query Message      | Response Message      |
|-----------------|--------------------|-----------------------|
|                 | SPUFREQ_BCH? a,b,n | c(b),c(b+1),,c(b+n-1) |

#### ■ Parameter

a

Spurious Table Selection

| а    | Result                       |
|------|------------------------------|
| SPR1 | Result of Spurious Emission1 |
| SPR2 | Result of Spurious Emission2 |

b

# Frequency Table

| Value     | Unit |
|-----------|------|
| F1 to F15 | None |

n

#### Read out count

| Value   | Resolution | Unit |
|---------|------------|------|
| 1 to 15 | 1          | None |

c(a)

# Spurious Frequency

| Resolution | Unit       |
|------------|------------|
| 1          | $_{ m Hz}$ |

#### ■ Use example

Reads out frequencies of F1 to F4 of Spurious Emission1 at Batch measurement.

<Program>

DSPL BATCH

 ${\bf SPUFREQ\_BCH?\ SPR1,F1,\ 4}$ 

#### <Response>

1102000000, 4176200000, 6722620000, 7716100000

# **SPUFREQLVL**

#### **■** Function

Spurious Frequency and Spurious Level for Spurious Emission

Reads out the measured results for spurious frequency and level on the Spurious Emission screen.

# ■ Syntax

| Program Message | Query Message     | Response Message                           |
|-----------------|-------------------|--------------------------------------------|
|                 | SPUFREQLVL? a,b,c | d(a),e(a),d(a+1),e(a+1),,d(a+b-1),e(a+b-1) |

#### ■ Parameter

а

# Frequency Table

| а         | Unit |
|-----------|------|
| F1 to F15 | None |

b

# Read out count

| b       | Resolution |
|---------|------------|
| 1 to 15 | 1          |

c

#### Output unit

| С     | Unit  |
|-------|-------|
| None  | dBm   |
| DBM   | dBm   |
| DB    | dB    |
| W     | W     |
| W_MHZ | W/MHz |

d(a)

Spurious frequency in frequency table a

| Resolution | Unit       |
|------------|------------|
| 1          | $_{ m Hz}$ |

e(a)

Spurious level in frequency table a

| Output unit | Resolution           |
|-------------|----------------------|
| dBm         | 0.01                 |
| dB          | 0.01                 |
| W           | 4 significant digits |
| W/MHz       |                      |

#### ■ Restrictions

 $\bullet\,$  "\*\*\*" is displayed as the result for a frequency table that is not measured.

#### ■ Use example

Reads out a spurious frequency of F2 to F4 and the spurious level in Spot measurement in dBm units.

<Program>

DSPL SPURIOUS,SPOT

SWP

SPUFREQLVL? F2,3,DBM

#### <Response>

 $12340000, -12.34, \, 234500000, -23.45, \, 3456000000, -34.56$ 

# SPUFREQLVL\_BCH

#### **■** Function

Spurious Frequency and Spurious Level for Batch

Reads out the measured results for spurious frequency and level on the Batch screen.

# ■ Syntax

| Program Message | Query Message           | Response Message                           |
|-----------------|-------------------------|--------------------------------------------|
|                 | SPUFREQLVL_BCH? a,b,n,u | c(b),d(b),c(b+1),d(b+1),,c(b+n-1),d(b+n-1) |

#### ■ Parameter

а

Spurious Table Selection

| а    | Result                       |
|------|------------------------------|
| SPR1 | Result of Spurious Emission1 |
| SPR2 | Result of Spurious Emission2 |

b

# Frequency Table

| Value     | Unit |
|-----------|------|
| F1 to F15 | None |

n

# Read out count

| Value   | Resolution | Unit |
|---------|------------|------|
| 1 to 15 | 1          | None |

и

# Unit

| Value | Unit  |
|-------|-------|
| None  | dBm   |
| DBM   | dBm   |
| DB    | dB    |
| W     | W     |
| W_MHZ | W/MHz |

#### c(n)

# Spurious frequency

| Resolution | Unit       |
|------------|------------|
| 1          | $_{ m Hz}$ |

# d(n)

# Spurious level

| Output unit | Resolution           |  |
|-------------|----------------------|--|
| dBm         | 0.01                 |  |
| dB          | 0.01                 |  |
| W           | 4 significant digits |  |
| W/MHz       |                      |  |

# ■ Use example

Reads out a spurious frequency of F2 to F4 of Spurious Emission1 and the spurious level at Batch measurement in dBm units.

<Program>

DSPL BATCH

SPUFREQLVL\_BCH? SPR1,F2,3,DBM

#### <Response>

12340000, -12.34, 234500000, -23.45, 3456000000, -34.56

# **SPUJDG**

#### **■** Function

Spurious Total Judgement for Spurious Emission

Reads out measured general spurious judgement for spurious emission.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | SPUJDG?       | а                |

#### ■ Parameter

я

Spurious Judgement Result

| а    | Result     |
|------|------------|
| PASS | Pass       |
| FAIL | Fail       |
| OFF  | Not judged |

#### ■ Use example

Reads out general judgement result at spot measurement.

<Program>

DSPL SPURIOUS, SPOT

SWP

SPUJDG?

<Response>

PASS

# SPUJDG\_BCH

#### **■** Function

Spurious Total Judgement for Batch

Reads out measured general spurious judgement on the Batch screen.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | SPUJDG_BCH? a | b                |

#### ■ Parameter

a

Spurious Table Selection

| а    | Result                       |
|------|------------------------------|
| SPR1 | Result of Spurious Emission1 |
| SPR2 | Result of Spurious Emission2 |

b

Spurious Judgement Result

| b    | Result     |
|------|------------|
| PASS | Pass       |
| FAIL | Fail       |
| OFF  | Not judged |

# ■ Use example

Reads out general judgement result of Spurious Emission1 at Batch measurement.

<Program>

DSPL BATCH

SPUJDG\_BCH?

<Response>

**PASS** 

# **SPULMT**

#### ■ Function

Limit for Spurious Emission

Sets reference value to do results judgement at spurious emission measurement.

# ■ Syntax

| Program Message                   | Query Message                 | Response Message |
|-----------------------------------|-------------------------------|------------------|
| SPULMT a, Ftable_no, lmt, b, unit | SPULMT? a, Ftable_no, b, unit | lmt              |

#### ■ Parameter

а

# Measure Method

| Value | Measure Method                             |  |
|-------|--------------------------------------------|--|
| SPOT  | At spot measurement                        |  |
| SWEEP | At sweep measurement or search measurement |  |

# $Ftable\_no$

# Frequency Table Number

| Range     | Resolution | Unit |
|-----------|------------|------|
| F1 to F15 | 1          | None |

#### lmt

#### Reference Value

| Range             | Resolution | Unit   |
|-------------------|------------|--------|
| -100.00 to 100.00 | 0.01       | dBm    |
| 0.001 to 999.999  | 0.001      | xW/MHz |

#### b

# Judgement Method

| b   | Description                                   |
|-----|-----------------------------------------------|
| ABS | Judges results with spurious absolute level   |
| REL | Judges results with carrier & spurious levels |

# unit

#### Unit

| OIIIt |     |                                           |
|-------|-----|-------------------------------------------|
| b     | е   | Description                               |
|       | DBM | Sets Absolute Limit value in a dBm unit.  |
| ABS   | MW  | Sets Absolute Limit value in mW/MHZ unit. |
| ADS   | UW  | Sets Absolute Limit value in uW/MHZ unit. |
|       | NW  | Sets Absolute Limit value in nW/MHZ unit. |
| REL   | DB  | Sets Relative Limit value in a dB unit.   |

#### ■ Initial value

Initial value of each parameter is as follows. "---" means no value is set.

Spurious Mode: Spot Target Sysytem: IEEE802.11a, HiperLAN2, HiSWANa

| Table Number | Reference Value | Unit   |
|--------------|-----------------|--------|
| F1           | 0.001           | uW/MHz |
| F2           | 0.001           | uW/MHz |
| F3           | 0.001           | uW/MHz |
| F4 to F15    |                 |        |

Spurious Mode: Spot Target Sysytem: IEEE802.11b, IEEE802.11g

| Table Number | Reference Value | Unit   |
|--------------|-----------------|--------|
| F1           | 0.001           | uW/MHz |
| F2           | 0.001           | uW/MHz |
| F3           | 0.001           | uW/MHz |
| F4 to F15    |                 |        |

Spurious Mode: Search, Sweep

| Table Number | Frequency |
|--------------|-----------|
| F1 to F15    |           |

# ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets reference level of the fourth table for spot measurement to  $-13~\mathrm{dBm}$  at spurious emission measurement.

<Program>

DSPL SPURIOUS, SPOT

SPULMT SPOT, F4, -13, DBM

<Response>

-13.00

# **SPULVL**

#### ■ Function

Spurious Level for Spurious Emission

Reads out measured spurious level for spurious emission.

# ■ Syntax

| Program Message | Query Message   | Response Message      |
|-----------------|-----------------|-----------------------|
|                 | SPULVL? a, n, u | c(a),c(a+1),,c(a+n-1) |

#### ■ Parameter

я

# Frequency Table

| Value     | Unit |
|-----------|------|
| F1 to F15 | None |

n

# Read out count

| Value   | Resolution | Unit |
|---------|------------|------|
| 1 to 15 | 1          | None |

и

# Unit

| С     | Unit  |
|-------|-------|
| None  | dBm   |
| DBM   | dBm   |
| DB    | dB    |
| W     | W     |
| W_MHZ | W/MHz |

c(n)

# Spurious level

| Output unit | Resolution           |
|-------------|----------------------|
| dBm         | 0.01                 |
| dB          | 0.01                 |
| W           | A significant digita |
| W/MHz       | 4 significant digits |

# ■ Use example

Reads out spurious level of F1 to F4 at spot measurement.

<Program>

DSPL SPURIOUS, SPOT

SWP

SPURLVL? F1, 4

<Response>

-60.54, -45.83, -53.32, -56.29

# SPULVL\_BCH

#### **■** Function

Spurious Level for Batch

Reads out measured spurious level on the Batch screen.

# ■ Syntax

| Program Message | Query Message       | Response Message      |
|-----------------|---------------------|-----------------------|
|                 | SPULVL_BCH? a,b,n,u | c(b),c(b+1),,c(b+n-1) |

#### ■ Parameter

а

Spurious Table Selection

| а    | Result                       |
|------|------------------------------|
| SPR1 | Result of Spurious Emission1 |
| SPR2 | Result of Spurious Emission2 |

b

# Frequency Table

| Value     | Unit |
|-----------|------|
| F1 to F15 | None |

n

# Read out count

| Value   | Resolution | Unit |
|---------|------------|------|
| 1 to 15 | 1          | None |

И

#### Unit

| Value | Unit  |
|-------|-------|
| None  | dBm   |
| DBM   | dBm   |
| DB    | dB    |
| W     | W     |
| W_MHZ | W/MHz |

# c(n)

# Spurious level

| Output unit | Resolution           |  |
|-------------|----------------------|--|
| dBm         | 0.01                 |  |
| dB          | 0.01                 |  |
| W           | 4 significant digits |  |
| W/MHz       |                      |  |

# ■ Use example

Reads out spurious level of F1 to F4 of Spurious Emission1 at Batch measurement.

<Program>

DSPL BATCH

SPURLVL\_BCH? SPR1,F1, 4

<Response>

-60.54, -45.83, -53.32, -56.29

# **SPUPASS**

#### **■** Function

Spurious Judgement for Spurious Emission

Reads out measured spurious judgement for spurious emission.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | SPUPASS? a    | b                |
|                 | SPUPASS? ALL  | b(1),b(2),,b(15) |

#### ■ Parameter

я

Frequency Table

| Value     | Description                                             |
|-----------|---------------------------------------------------------|
| F1 to F15 | Reads out judgement result of specified frequency table |
| ALL       | Reads out judgement result of all frequency tables      |

# b(n)

Spurious Judgement Result

| b    | Result     |
|------|------------|
| PASS | Pass       |
| FAIL | Fail       |
| OFF  | Not judged |

### ■ Use example

Reads out judgement result of frequency table F2 at spot measurement.

<Program>

DSPL SPURIOUS, SPOT

SWP

SPUPASS? F2

<Response>

PASS

# SPUPASS\_BCH

#### **■** Function

Spurious Judgement for Batch

Reads out measured spurious judgement on Batch screen.

# ■ Syntax

| Program Message | Query Message    | Response Message |
|-----------------|------------------|------------------|
|                 | SPUPASS_BCH? a,n | b                |
|                 | SPUPASS_BCH? ALL | b(1),b(2),,b(15) |

#### ■ Parameter

а

Spurious Table Selection

| а    | Result                       |
|------|------------------------------|
| SPR1 | Result of Spurious Emission1 |
| SPR2 | Result of Spurious Emission2 |

n

# Frequency Table

| Value     | Description                                             |
|-----------|---------------------------------------------------------|
| F1 to F15 | Reads out judgement result of specified frequency table |
| ALL       | Reads out judgement result of all frequency tables      |

#### b(n)

# Spurious Judgement Result

| b    | Result     |
|------|------------|
| PASS | Pass       |
| FAIL | Fail       |
| OFF  | Not judged |

### ■ Use example

Reads out judgement result of frequency table F2 of Spurious Emission1 at Batch measurement.

<Program>

DSPL BATCH

SPUPASS\_BCH? SPR1,F2

<Response>

PASS

# START\_BCH

#### **■** Function

Batch Measurement

Starts batch measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| START_BCH       | START_BCH?    | n                |

#### ■ Parameter

n

Measurement state

| n | Measurement State   |  |
|---|---------------------|--|
| 1 | Under measurement   |  |
| 0 | Measurement stopped |  |

# ■ Restrictions

• This command is valid in the Batch Measure screen only.

# ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Starts batch measurement.

<Program>

DSPL BATCH

 $START_BCH$ 

START\_BCH?

<Response>

1

# STM\_ADJ

#### ■ Function

Sweep Time: Auto/Manual for Adjacent Channel Power

Sets whether Sweep Time for Spectrum Analyzer is set automatically or manually at Adjacent Channel Power measurement.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STM_ADJ mode    | STM_ADJ?      | mode             |

#### ■ Parameter

mode

Sweep Time setting mode

| Value | Mode                                               | Initial value |
|-------|----------------------------------------------------|---------------|
| AUTO  | Sets the Sweep Time setting mode to automatic mode | *             |
| MAN   | Sets the Sweep Time setting mode to manual mode    |               |

#### ■ Restrictions

- If Sweep Time is changed when the setting mode is set to Auto, the setting is forcibly switched to Manual.
- The value of Sweep Time is automatically set by the values of RBW and VBW when the setting mode is Auto.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

### ■ Use example

Sets the Sweep Time setting mode to automatic mode at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

STM ADJ AUTO

STM\_ADJ?

<Response>

**AUTO** 

# STM\_OBW

#### **■** Function

Sweep Time: Auto/Manual for Occupied Bandwidth

Sets whether Sweep Time for Spectrum Analyzer is set automatically or manually at Occupied Bandwidth measurement.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STM_OBW mode    | STM_OBW?      | mode             |

#### ■ Parameter

mode

Sweep Time setting mode

| Value | Mode                                               | Initial value |
|-------|----------------------------------------------------|---------------|
| AUTO  | Sets the Sweep Time setting mode to automatic mode | *             |
| MAN   | Sets the Sweep Time setting mode to manual mode    |               |

#### ■ Restrictions

- If Sweep Time is changed when the setting mode is set to Auto, the setting is forcibly switched to Manual
- The value of Sweep Time is automatically set by the values of RBW and VBW when the setting mode is Auto.

#### ■ Initialization command

PRE

INI

IP

\*RST

#### ■ Use example

Sets the Sweep Time setting mode to automatic mode at Occupied Bandwidth measurement.

<Program>

DSPL OBW

STM OBW AUTO

STM\_OBW?

<Response>

**AUTO** 

# STM\_SMASK

#### **■** Function

Sweep Time: Auto/Manual for Spectrum Mask

Sets whether Sweep Time for Spectrum Analyzer is set automatically or manually at Spectrum Mask measurement.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STM_SMASK mode  | STM_SMASK?    | mode             |

#### ■ Parameter

mode

Sweep Time setting mode

| Value | Mode                                               | Initial value |
|-------|----------------------------------------------------|---------------|
| AUTO  | Sets the Sweep Time setting mode to automatic mode | *             |
| MAN   | Sets the Sweep Time setting mode to manual mode    |               |

#### ■ Restrictions

- If Sweep Time is changed when the setting mode is set to Auto, the setting is forcibly switched to Manual.
- The value of Sweep Time is automatically set by the values of RBW and VBW when the setting mode is Auto.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the Sweep Time setting mode to automatic mode at Spectrum Mask measurement.

<Program>

 $DSPL\ SMASK$ 

STM SMASK AUTO

STM\_SMASK?

<Response>

**AUTO** 

# STOP\_BCH

#### **■** Function

Batch Measurement

Stops batch measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STOP_BCH        | STOP_BCH?     | n                |

#### ■ Parameter

n

Measurement state

| n | Measurement State   |  |
|---|---------------------|--|
| 1 | Measurement stopped |  |
| 0 | Under measurement   |  |

# ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Stops batch measurement.

<Program>

DSPL BATCH

 $STOP\_BCH$ 

STOP\_BCH?

<Response>

1

# STRG\_ADJ

#### ■ Function

Storage Mode for Adjacent Channel Power

Sets the method for displaying the measured results at Adjacent Channel Power measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STRG_ADJ mode   | STRG_ADJ?     | mode             |

#### ■ Parameter

mode

Display method

| Value | Description                                                                                                                     | Initial Value |
|-------|---------------------------------------------------------------------------------------------------------------------------------|---------------|
| NRM   | Normal: Gives a ordinary display (single measurement).                                                                          | *             |
| AVG   | Average: Repeats a measurement by the number of times specified by Average Count, and displays the average value as the result. |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Displays the average value at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

 $STRG\_ADJAVG$ 

STRG\_ADJ?

<Response>

# STRG\_CCERR

#### **■** Function

Storage Mode for Chip Clock Error

Sets the method for displaying the measured results in Chip Clock Error measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STRG_CCERR mode | STRG_CCERR?   | mode             |

#### ■ Parameter

mode

Display method

| Value | Display Method                                                                                                                 | Initial Value |
|-------|--------------------------------------------------------------------------------------------------------------------------------|---------------|
| NRM   | Normal: Ordinary display (single measurement).                                                                                 | *             |
| AVG   | Average: Repeats measurement for the number of times specified by Average Count, and displays the average value as the result. |               |

#### ■ Initialization command

PRE

INI

IP

\*RST

# ■ Use example

Displays the average value in Chip Clock Error measurement.

<Program>

DSPL CCERR

STRG\_CCERR AVG

STRG\_CCERR?

<Response>

# STRG\_IQL

#### **■** Function

Storage Mode for IQ Level

Sets the method for displaying the measured results in IQ Level measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STRG_IQL mode   | STRG_IQL?     | mode             |

#### ■ Parameter

mode

Display method

| Value | Display Method                                                                                                                 | Initial Value |
|-------|--------------------------------------------------------------------------------------------------------------------------------|---------------|
| NRM   | Normal: Ordinary display (single measurement).                                                                                 | *             |
| AVG   | Average: Repeats measurement for the number of times specified by Average Count, and displays the average value as the result. |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Displays the average value in IQ Level measurement.

<Program>

DSPL IQLVL

STRG\_IQL AVG

STRG\_IQL?

<Response>

# STRG\_MOD

#### ■ Function

Storage Mode for Modulation Analysis

Sets the method for displaying the measured results at Modulation Analysis measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STRG_MOD mode   | STRG_MOD?     | mode             |

#### ■ Parameter

mode

Display method

| Value | Display Method                                                                                                                   | Initial Value |
|-------|----------------------------------------------------------------------------------------------------------------------------------|---------------|
| NRM   | Normal: Gives a ordinary display (single measurement).                                                                           | *             |
| AVG   | Average: Repeats a measurement by the number of times specified by Average Count, and displays the average value as the result.  |               |
| OVER  | Overwrite: Overwrites the plotting of measured results in order, and displays the overwritten results at Continuous measurement. |               |

#### ■ Initialization command

PRE

INI

ΙP

 $*{\rm RST}$ 

# ■ Use example

Displays the average value at Modulation Analysis measurement.

<Program>

DSPL MODANAL

STRG\_MOD AVG

STRG\_MOD?

<Response>

# STRG\_OBW

#### **■** Function

Storage Mode for Occupied Bandwidth

Sets the method for displaying the measured results at Occupied Bandwidth measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STRG_OBW mode   | STRG_OBW?     | mode             |

#### ■ Parameter

mode

Display method

| Value | Description                                                                                                                     | Initial value |
|-------|---------------------------------------------------------------------------------------------------------------------------------|---------------|
| NRM   | Normal: Gives a ordinary display (single measurement).                                                                          | *             |
| AVG   | Average: Repeats a measurement by the number of times specified by Average Count, and displays the average value as the result. |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Displays the average value at Occupied Bandwidth measurement.

<Program>

DSPL OBW

STRG\_OBW AVG

STRG\_OBW?

<Response>

# STRG\_RFPWR

# **■** Function

Storage Mode for RF Power

Sets the method for displaying the measured results at RF Power measurement.

# ■ Syntax

| Program Message | Query Message    | Response Message |
|-----------------|------------------|------------------|
| STRG_RFPWR mode | STRG_RFPWR? mode |                  |

#### ■ Parameter

mode

Display method

| Value | Display Method                                                                                                           | Initial Value |
|-------|--------------------------------------------------------------------------------------------------------------------------|---------------|
| NRM   | Normal: Ordinary display (single measurement).                                                                           | *             |
| AVG   | Average: Repeats measurement by number of times specified by Average Count and displays the average value as the result. |               |
| OVER  | Overwrite: Overwrites measured results plotting in order and displays the overwritten results at Continuous measurement. |               |

#### ■ Initialization command

PRE

INI

IΡ

\*RST

# ■ Use example

Displays the average value at RF Power measurement.

<Program>

DSPL RFPWR

STRG\_RFPWR AVG

STRG\_RFPWR?

<Response>

# STRG\_SRERR

# **■** Function

Storage Mode for Symbol Rate Error

Sets the method for displaying the measured results in Symbol Rate Error measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STRG_SRERR mode | STRG_SRERR?   | mode             |

#### ■ Parameter

mode

Display method

| Value | Display Method                                                                                                                 | Initial Value |
|-------|--------------------------------------------------------------------------------------------------------------------------------|---------------|
| NRM   | Normal: Ordinary display (single measurement).                                                                                 | *             |
| AVG   | Average: Repeats measurement for the number of times specified by Average Count, and displays the average value as the result. |               |

# ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Displays the average value in Symbol Rate Error measurement.

<Program>

DSPL SRERR

STRG\_SRERR AVG

STRG\_SRERR?

<Response>

# STRG\_SMASK

# **■** Function

Storage Mode for Spectrum Mask

Sets the method for displaying the measured results at Spectrum Mask measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STRG_SMASK mode | STRG_SMASK?   | mode             |

#### ■ Parameter

mode

Display method

| Value | Description                                                                                                                     | Initial value |
|-------|---------------------------------------------------------------------------------------------------------------------------------|---------------|
| NRM   | Normal: Gives a ordinary display (single measurement).                                                                          | *             |
| AVG   | Average: Repeats a measurement by the number of times specified by Average Count, and displays the average value as the result. |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Displays the average value at Spectrum Mask measurement.

<Program>

DSPL SMASK

 ${\tt STRG\_SMASK\,AVG}$ 

STRG \_SMASK?

<Response>

# STRG\_SPU

# **■** Function

Storage Mode for Spurious Emission

Sets the method for displaying the measured results at spurious emission measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| STRG_SPU mode   | STRG_SPU?     | mode             |

#### ■ Parameter

mode

Display Method

| Value | Description                                                                                                                | Initial value |
|-------|----------------------------------------------------------------------------------------------------------------------------|---------------|
| NRM   | Normal: Normal display (single measurement).                                                                               | *             |
| AVG   | Average: Repeats measurement the number of times specified by average count, and displays the average value as the result. |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Displays the average value at spurious emission measurement.

<Program>

DSPL SPURIOUS, SWEEP STRG\_SPU AVG STRG\_SPU?

<Response>

# **SWP**

#### **■** Function

Single Measure/Sweep

Executes a measurement or sweeping once.

Unlike the SNGLS command, when the measuring instrument accepts a command during measurement, the command is not processed immediately but is queued until measurement is completed. Since the command following this SWP command is processed after the current measurement comple-

Since the command following this SWP command is processed after the current measurement completion, this means that the synchronization between the measuring instrument operation and the program (which sends the command) is ensured.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SWP             | SWP?          | a                |

#### ■ Parameter

а

Measurement/sweep state

| Value | Measurement/sweep state |  |
|-------|-------------------------|--|
| 1     | Sweeping                |  |
| 0     | Sweep stopped           |  |

#### ■ Restrictions

• This command is disabled when using Batch Measurement.

# ■ Use example

Executes a measurement or sweeping once.

<Program>

**SWP** 

# SWT\_ADJ

#### ■ Function

Sweep Time for Adjacent Channel Power

Sets Sweep Time for Spectrum Analyzer at Adjacent Channel Power measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SWT_ADJ t       | SWT_ADJ?      | t                |

#### ■ Parameter

t

Sweep Time at setting parameter

| Range         | Resolution | Unit | Initial value |
|---------------|------------|------|---------------|
| 10 to 1000000 | 1          | ms   | 10            |

Sweep Time at reading value

| Range               | Resolution | Unit |
|---------------------|------------|------|
| 10000 to 1000000000 | 1          | μs   |

# ☐ Suffix code

None: ms

S: s MS: ms US: us

#### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets sweep time to 100 ms at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

SWT\_ADJ 100MS

 $SWT\_ADJ$ ?

<Response>

# SWT\_OBW

#### ■ Function

Sweep Time for Occupied Bandwidth

Sets Sweep Time for Spectrum Analyzer at Occupied Bandwidth measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SWT_OBW t       | SWT_OBW?      | t                |

#### ■ Parameter

f.

Sweep Time at setting parameter

| Range         | Resolution | Unit | Initial value |
|---------------|------------|------|---------------|
| 10 to 1000000 | 1          | ms   | 10            |

# Sweep Time at reading value

| Range                  | Resolution | Unit |
|------------------------|------------|------|
| 10000 to<br>1000000000 | 1          | μs   |

# ☐ Suffix code

None: ms

S: s

MS: ms

US: us

#### ■ Initialization command

PRE

INI

IP

\*RST

# ■ Use example

Sets sweep time to 100 ms at Occupied Bandwidth measurement.

<Program>

DSPL OBW

SWT\_OBW 100MS

SWT\_OBW?

<Response>

# SWT\_SMASK

#### ■ Function

Sweep Time for Spectrum Mask

Sets Sweep Time for Spectrum Analyzer at Spectrum Mask measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SWT_SMASK t     | SWT_SMASK?    | t                |

#### ■ Parameter

t.

Sweep Time at setting parameter

| Range         | Resolution | Unit | Initial value |
|---------------|------------|------|---------------|
| 10 to 1000000 | 1          | ms   | 80            |

Sweep Time at reading value

| Range               | Resolution | Unit |
|---------------------|------------|------|
| 10000 to 1000000000 | 1          | μs   |

# ☐ Suffix code

None: ms

S: s MS: ms US: us

#### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets sweep time to 100 ms at Spectrum Mask measurement.

<Program>

DSPL SMASK

 $SWT\_SMASK~100MS$ 

SWT\_SMASK?

<Response>

# SYS

# ■ Function

System Change

Switches the measurement software in the Signal Analysis mode.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| SYS area        | SYS?          | area             |

#### ■ Parameter

area

Storage area for measurement software

| Value | Storage Area for Measurement Software |
|-------|---------------------------------------|
| 1     | Area 1 (F1 key)                       |
| 2     | Area 2 (F2 key)                       |
| 3     | Area 3 (F3 key)                       |

# ■ Use example

Switches to the software stored in Area 1.

<Program>

SYS 1

SYS?

<Response>

# TBLATTMD\_SPU

#### **■** Function

Attenuator Mode: Manual/Auto for Spurious Emission

Sets whether attenuator is set automatically or manually at spurious emission measurement.

# ■ Syntax

| Program Message   | Query Message   | Response Message |
|-------------------|-----------------|------------------|
| TBLATTMD_SPU a, b | TBLATTMD_SPU? a | b                |

#### ■ Parameter

а

#### Measure Method

|       | Measure Method                             |
|-------|--------------------------------------------|
| SPOT  | At spot measurement                        |
| SWEEP | At sweep measurement or search measurement |

b

#### Setting Method

| Value | Setting Method                                 | Initial Value |
|-------|------------------------------------------------|---------------|
| MAN   | Sets attenuator setting mode to manual mode    |               |
| AUTO  | Sets attenuator setting mode to automatic mode | *             |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Restrictions

• Setting is forcibly switched to Manual if attenuator is changed when setting mode is set to Auto.

# ■ Use example

Sets attenuator in Spot measurement into automatic setting at spurious emission measurement.

<Program>

TBLATTMD\_SPU SPOT, AUTO

 $TBLATTMD\_SPU?$  SPOT

<Response>

AUTO

# TBLATTRLMD\_SPU

#### **■** Function

Attenuator Reference Level Mode: Manual/Auto for Spurious Emission

Sets whether attenuator and reference level for spectrum analyzer are automatically or manually set at spurious emission measurement.

# ■ Syntax

| Program Message     | Query Message     | Response Message |
|---------------------|-------------------|------------------|
| TBLATTRLMD_SPU a, b | TBLATTRLMD_SPU? a | b                |

#### ■ Parameter

а

#### Measure Method

| Value | Measure Method                             |
|-------|--------------------------------------------|
| SPOT  | At spot measurement                        |
| SWEEP | At sweep measurement or search measurement |

b

# Setting Method

| Value | Setting Method                                                      | Initial Value |
|-------|---------------------------------------------------------------------|---------------|
| MAN   | Sets attenuator and reference level setting modes to manual mode    |               |
| AUTO  | Sets attenuator and reference level setting modes to automatic mode | *             |

# ■ Restrictions

• Setting is forcibly switched to Manual if attenuator or reference level is changed when the setting mode is set to Auto.

#### ■ Initialization command

PRE

INI

IΡ

\*RST

# ■ Use example

Sets attenuator and reference level in Spot measurement into automatic setting at spurious emission measurement.

<Program>

TBLATTRLMD\_SPU SPOT, AUTO

TBLATTRLMD\_SPU? SPOT

<Response>

**AUTO** 

# TBLATT\_SPU

#### ■ Function

Attenuator for Spurious Emission

Sets attenuator at spurious emission measurement.

# ■ Syntax

| Program Message                  | Query Message               | Response Message |
|----------------------------------|-----------------------------|------------------|
| TBLATT_SPU table, Ftable_no, att | TBLRL_SPU? table, Ftable_no | att              |

# ■ Parameter

table

Frequency Table

| Value | Frequency Table    |
|-------|--------------------|
| SPOT  | Spot Table         |
| SWEEP | Sweep/Search Table |

# Ftable\_no

Frequency Table Number

| Range     | Resolution | Unit |  |
|-----------|------------|------|--|
| F1 to F15 | 1          | None |  |

att

## Attenuator

| Main frame                         | Range   | Resolution | Unit |
|------------------------------------|---------|------------|------|
| MS2681A, MS2683A, MS8608A, MS8609A | 0 to 62 | 2          | dB   |
| MS2687A, MS2687B                   | 0 to 70 | 10         | dB   |

# ☐ Suffix code

None: dB DB: dB

#### ■ Restrictions

• Setting ranges of attenuator vary according to reference level.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets attenuator of fourth table for Sweep measurement to  $20\ dB$  at spurious emission measurement.

<Program>

DSPL SETTBL\_SPU, SWEEP TBLATT\_SPU SWEEP, F4, 20DB TBLATT\_SPU? SWEEP, F4

<Response>

# TBLFREQ\_SPU

#### ■ Function

Sets the frequency of each frequency table for Setup Spot Table or Setup Search/Sweep Table.

# ■ Syntax

| Program Message                   | Query Message                | Response Message |
|-----------------------------------|------------------------------|------------------|
| TBLFREQ_SPU mode, Ftable_no, freq | TBLFREQ_SPU? mode, Ftable_no | freq             |
| TBLFREQ_SPU mode, HRM             | TBLFREQ_SPU? mode, Ftable_no | freq             |

Sets n times of carrier frequency in F1 to F15 when second argument is HRM.

# ■ Parameter

#### mode

Frequency Type

| Value | Frequency                                     |
|-------|-----------------------------------------------|
| SPOT  | Measurement frequency of Spot Mode            |
| START | Sweep starting frequency of Sweep/Search Mode |
| STOP  | Sweep closing frequency of Sweep/Search Mode  |

# $Ftable\_no$

# Frequency Table Number

| Range     | Resolution | Unit |  |
|-----------|------------|------|--|
| F1 to F15 | 1          | None |  |

# freq

# Frequency

| Mode              | Range                                                 | Resolution | Unit |
|-------------------|-------------------------------------------------------|------------|------|
| SPOT              | 100 to upper limited frequency of main frame          | 1          | Hz   |
| START             | 1000 to (upper limited frequency of main frame -1000) | 1          | Hz   |
| STOP              | 2000 to upper limited frequency of main frame         | 1          | Hz   |
| SPOT, START, STOP | 0                                                     |            |      |

• Frequency table is deleted when zero is set.

☐ Suffix code

None: Hz HZ: Hz

KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

#### ■ Initial value

Initial value of each parameter is as follows. "---" means no value is set.

Spurious Mode: Spot Target Sysytem: IEEE802.11a, HiperLAN2, HiSWANa

| Table Number | Frequency               |
|--------------|-------------------------|
| F1           | 10,340 MHz              |
| F2           | $15,\!510~\mathrm{MHz}$ |
| F3           | $20,680~\mathrm{MHz}$   |
| F4 to F15    |                         |

Spurious Mode: Spot Target Sysytem:IEEE802.11b, IEEE802.11g

| Table Number | Frequency              |
|--------------|------------------------|
| F1           | $4,824~\mathrm{MHz}$   |
| F2           | $7,\!236~\mathrm{MHz}$ |
| F3           | $9,648~\mathrm{MHz}$   |
| F4 to F15    |                        |

Spurious Mode: Search, Sweep

| Table Number | Frequency |
|--------------|-----------|
| F1 to F15    |           |

# ■ Initialization command

\*RST

#### ■ Use example

Sets frequency of fourth table for Spot Table to 1850 MHz at spurious emission measurement.

<Program>

 $DSPL\ SETTBL\_SPU,\ SPOT$ 

TBLFREQ\_SPU SPOT, F4, 1850MHZ

TBLFREQ\_SPU?

<Response>

# TBLRBWMD\_SPU

#### ■ Function

RBW Manual/Auto for Spurious Emission

Sets whether RBW is set automatically or manually at spurious emission measurement.

# ■ Syntax

| Program Message   | Query Message   | Response Message |
|-------------------|-----------------|------------------|
| TBLRBWMD_SPU a, b | TBLRBWMD_SPU? a | b                |

#### ■ Parameter

a

# Measure Method

| Value | Measure Method                 |
|-------|--------------------------------|
| SPOT  | At spot measurement            |
| SWEEP | At sweep or search measurement |

b

# **RBW Setting Method**

| Value | Description                             | Initial Value |
|-------|-----------------------------------------|---------------|
| MAN   | Sets RBW setting mode to manual mode    |               |
| AUTO  | Sets RBW setting mode to automatic mode | *             |

# ■ Restrictions

- Setting is forcibly switched to Manual if RBW is changed when setting mode is set to Auto.
- The value of RBW is automatically set when the Auto setting mode is as follows.

| Frequency                                           | RBW                |
|-----------------------------------------------------|--------------------|
| $9 \text{ kHz} \le \text{freq} < 150 \text{ kHz}$   | 1 kHz              |
| $150 \text{ kHz} \leq \text{freq} < 30 \text{ MHz}$ | $10~\mathrm{kHz}$  |
| $30 \text{ MHz} \leq \text{freq} < 1 \text{ GHz}$   | $100~\mathrm{kHz}$ |
| 1 GHz ≤ freq                                        | $1~\mathrm{MHz}$   |

#### ■ Initialization command

PRE

INI

IP

\*RST

# ■ Use example

Sets RBW setting mode to automatic mode when the spot is measured at spurious emission measurement.

<Program>
TBLRBWMD\_SPU SPOT, AUTO
TBLRBWMD\_SPU? SPOT

<Response>

# TBLRBW\_SPU

# **■** Function

RBW for Spurious Emission

Sets RBW of each frequency table for Setup Spot Table or Setup Search/Sweep Table.

# ■ Syntax

| Program Message                  | Query Message                | Response Message |
|----------------------------------|------------------------------|------------------|
| TBLRBW_SPU table, Ftable_no, rbw | TBLRBW_SPU? table, Ftable_no | rbw              |

# ■ Parameter

table

Frequency Table

| Value | Frequency Table    |
|-------|--------------------|
| SPOT  | Spot Table         |
| SWEEP | Sweep/Search Table |

# $Ftable\_no$

Frequency Table Number

| Range     | Resolution | Unit |
|-----------|------------|------|
| F1 to F15 | 1          | None |

# rbw

Frequency

| RBW     | Value                                                              | Unit |
|---------|--------------------------------------------------------------------|------|
| Normal  | 300, 1 k, 3 k, 10 k, 30 k, 100 k, 300 k, 1 M, 3 M, 5 M, 10 M, 20 M | Hz   |
| Digital | 10, 30, 100, 300, 1 k, 3 k, 10 k, 30 k, 100 k, 300 k, 1 M          | пх   |

# ☐ Suffix code

None: Hz HZ: Hz

 $\begin{array}{l} KHZ,\,KZ\colon kHz\\ MHZ,\,MZ\colon MHz\\ GHZ,\,GZ\colon GHz \end{array}$ 

#### ■ Initialization command

PRE

INI

IΡ

\*RST

# ■ Use example

Sets frequency of fourth table for Spot Table to 30 kHz at spurious emission measurement.

<Program>

DSPL SETTBL\_SPU, SPOT TBLRBW\_SPU SPOT, F4, 30KHZ TBLRBW\_SPU? F4

<Response> 30000

# TBLRBWLM\_SPU

# ■ Function

**RBW for Spurious Emission** 

Sets RBW of spurious emission measurement for frequency tables in Search measurement on the Spurious Emission screen.

# ■ Syntax

| Program Message    | Query Message     | Response Message |
|--------------------|-------------------|------------------|
| TBLRBWLM_SPU a,b,c | TBLRBWLM_SPU? a,b | c                |

# ■ Parameter

а

# Spurious Mode

| а     | Spurious Mode             |
|-------|---------------------------|
| SWEEP | RBW at Search measurement |

b

# Frequency Table

| b         | Unit |
|-----------|------|
| F1 to F15 | None |

c

# RBW

| 1025 11 |                                                                                              |            |
|---------|----------------------------------------------------------------------------------------------|------------|
| RBW     | С                                                                                            | Unit       |
| Normal  | 300, 1000, 3000, 10000, 30000, 100000, 300000, 1000000, 3000000, 5000000, 10000000, 20000000 | $_{ m Hz}$ |
| Digital | 10, 30, 100, 300, 1000, 3000, 10000, 30000, 100000, 300000, 1000000                          |            |

☐ Suffix code

None: Hz HZ: Hz

KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

# ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets RBW of spurious emission measurement for Frequency Table 4 in Search measurement to 30 kHz.  $\,^{\rm Program}>$ 

DSPL SETTBL\_SPU,SWEEP TBLRBWLM\_SPU SWEEP,F4,30KHZ TBLRBWLM\_SPU? SWEEP,F4

<Response> 30000

# TBLRBWTP\_SPU

#### ■ Function

RBW Mode Normal/Digital for Spurious Emission

Sets RBW mode to normal or digital at spurious emission measurement.

# ■ Syntax

| Program Message   | Query Message   | Response Message |
|-------------------|-----------------|------------------|
| TBLRBWTP_SPU a, b | TBLRBWTP_SPU? a | b                |

#### ■ Parameter

a

#### Measure Method

| Value | Measure Method                             |
|-------|--------------------------------------------|
| SPOT  | At spot measurement                        |
| SWEEP | At sweep measurement or search measurement |

b

## RBW mode

| Value | Setting Method                     | Initial Value |
|-------|------------------------------------|---------------|
| NRM   | Implement RBW with analog hardware | *             |
| DGTL  | Implement RBW with digital filter  |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets RBW in spot measurement into digital setting at spurious emission measurement.

<Program>

TBLRBWTP\_SPU SPOT, DGTL

TBLRBWTP\_SPU? SPOT

<Response>

DGTL

#### ■ Note

This function is optional.

# TBLRL\_SPU

# **■** Function

Reference Level for Spurious Emission

Sets the reference level at spurious emission measurement.

# ■ Syntax

| Program Message                | Query Message               | Response Message |
|--------------------------------|-----------------------------|------------------|
| TBLRL_SPU table, Ftable_no, rl | TBLRL_SPU? table, Ftable_no | rl               |

# ■ Parameter

table

Frequency Table

| Value | Frequency Table    |  |
|-------|--------------------|--|
| SPOT  | Spot Table         |  |
| SWEEP | Sweep/Search Table |  |

# Ftable\_no

Frequency Table Number

| Range     | Resolution | Unit |
|-----------|------------|------|
| F1 to F15 | 1          | None |

rI

Reference Level

| Preamplifier | Range        | Resolution | Unit |
|--------------|--------------|------------|------|
| Off          | -120  to  40 | 0.01       | dBm  |
| On           | -140  to  20 | 0.01       | dBm  |

☐ Suffix code

None: dBm DBM: dBm

#### ■ Initialization command

PRE

INI

IΡ

\*RST

# ■ Use example

Sets reference level of fourth table for Sweep measurement to 10 dBm at spurious emission measurement.

<Program>
DSPL SETTBL\_SPU, SWEEP
TBLRL\_SPU SWEEP, F4, 10DBM
TBLRL\_SPU? SWEEP, F4

<Response> 10.00

# TBLSTD\_ADJ

#### ■ Function

Table Standard for Adjacent Channel Power

Performs settings conforming to the measurement method stipulated in the TELEC standards on the Adjacent Channel Leakage Power screen.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TBLSTD_ADJ a    |               |                  |

#### ■ Parameter

а

Settings for Spectrum Analyzer

| а   | Settings for Spectrum Analyzer                                                  |
|-----|---------------------------------------------------------------------------------|
| STD | Settings conforming to the measurement method stipulated in the TELEC standards |

# ■ Use example

Performs setting conforming to the measurement method stipulated in TELEC standards.

<Program>

DSPL ADJ, SPECT1

 $TBLSTD\_ADJ\ STD$ 

# TBLSTD\_ADJ\_BCH

#### ■ Function

#### Batch Measurement

Sets the adjacent channel leakage power measurement parameters on the Setup Measure Table (Batch screen) to values conforming to the TELEC Standard or to the user-defined settings.

#### ■ Syntax

| Program Message  | Query Message   | Response Message |
|------------------|-----------------|------------------|
| TBLSTD_ADJ_BCH a | TBLSTD_ADJ_BCH? | а                |

#### ■ Parameter

a

#### Standard

| Target System  | а      | Standard                 | Initial Value |
|----------------|--------|--------------------------|---------------|
| Other than     | STDIN  | TELEC Standard (indoor)  | *             |
| IEEE802.11b or | STDOUT | TELEC Standard (outdoor) |               |
| IEEE802.11g    | NOT    | User-defined settings    |               |

#### ■ Restrictions

• This command is valid only when the system is IEEE802.11a, HiperLAN2 or HiSWANa.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the adjacent channel leakage power measurement parameters to the values conforming to the TELEC Standard (outdoor).

<Program>

DSPL BATCH

TBLSTD\_ADJ\_BCH STDOUT

TBLSTD\_ADJ\_BCH?

<Response>

STDOUT

# TBLSTD\_OBW

#### ■ Function

TELEC Standard for Occupied Bandwidth

Selects the measurement standard for the occupied frequency bandwidth at Occupied Bandwidth measurement.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TBLSTD_OBW std  |               |                  |

#### ■ Parameter

std

Measurement standard

| Value  | Description                                                | Initial value |
|--------|------------------------------------------------------------|---------------|
| STDIN  | 5 GHz band low power data communication system             | *             |
| STDOUT | 5 GHz band radio access system                             |               |
| STD    | 2.4 GHz band wide band low power data communication system |               |

#### ■ Initialization command

PRE

INI

IP

\*RST

# ■ Use example

Selects STD (2.4 GHz band wide band low power data communication system) as the measurement standard at Occupied Bandwidth measurement.

<Program>

DSPL OBW

 ${\tt TBLSTD\_OBW\ STD}$ 

# TBLSTD\_OBW\_BCH

#### **■** Function

Batch Measurement

Sets the OBW measurement parameters on the Setup Measure Table (Batch screen) to values conforming to the TELEC Standard or to the user-defined settings.

# ■ Syntax

| Program Message  | Query Message   | Response Message |
|------------------|-----------------|------------------|
| TBLSTD_OBW_BCH a | TBLSTD_OBW_BCH? | a                |

#### ■ Parameter

а

# Standard

| Target System  | а      | Standard                 | Initial Value |
|----------------|--------|--------------------------|---------------|
| IEEE802.11b,   | STD    | TELEC Standard           | *             |
| IEEE802.11g    | NOT    | User-defined settings    |               |
| Other than the | STDIN  | TELEC Standard (indoor)  | *             |
| above          | STDOUT | TELEC Standard (outdoor) |               |
|                | NOT    | User-defined settings    |               |

## ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the OBW measurement parameters to the values conforming to the TELEC Standard (outdoor).

<Program>

 $DSPL\ SETTBL\_BCH$ 

 ${\tt TBLSTD\_OBW\_BCH\ STDOUT}$ 

TBLSTD\_OBW\_BCH?

<Response>

STDOUT

# TBLSTD\_SMASK

# **■** Function

Table Standard-Spectrum Mask

Performs settings conforming to the measurement method stipulated in the standards selected by the Target System on the Spectrum Mask screen.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TBLSTD_SMASK a  |               |                  |

# ■ Parameter

я

Settings for Spectrum Analyzer

| а   | Settings for Spectrum Analyzer                                                                          |
|-----|---------------------------------------------------------------------------------------------------------|
| STD | Settings conforming to the measurement method stipulated in the standards selected by the Target System |

# ■ Use example

Performs settings conforming to the measurement method stipulated in IEEE802.11b.

<Program>

TGTSY 11B

DSPL SMASK

TBLSTD\_SMASK STD

# TBLSTD\_SMASK\_BCH

#### **■** Function

Batch Measurement

Sets the spectrum mask measurement parameters on the Setup Measure Table (Batch screen) to values conforming to the measurement method stipulated in the standard selected by the target system or to the user-defined settings.

#### ■ Syntax

| Program Message    | Query Message     | Response Message |
|--------------------|-------------------|------------------|
| TBLSTD_SMASK_BCH a | TBLSTD_SMASK_BCH? | а                |

#### ■ Parameter

а

Settings for Spectrum Analyzer

| а   | Settings for Spectrum Analyzer                                                                         | Initial Value |
|-----|--------------------------------------------------------------------------------------------------------|---------------|
| STD | Settings conforming to the measurement method stipulated in the standard selected by the target system | *             |
| NOT | User-defined settings                                                                                  |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

# ■ Use example

Sets the spectrum mask measurement parameters to the values conforming to the measurement method stipulated in IEEE802.11b.

<Program>

TGTSY 11B

DSPL  $SETTBL_BCH$ 

 ${\tt TBLSTD\_SMASK\_BCH\ STD}$ 

TBLSTD\_SMASK\_BCH?

<Response>

STD

# TBLSTD\_SPU

# ■ Function

Table Standard Spurious

Sets the frequency table values according to the standards on the Spurious Emission screen.

# ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TBLSTD_SPU a    |               |                  |

# ■ Parameter

а

# Standards

| а  | Standards                                                          |
|----|--------------------------------------------------------------------|
| 0  | TELEC 2.4G Data Communication System Spurious                      |
| 1  | TELEC 2.4G Data Communication System Secondary Emission            |
| 2  | TELEC 5G Wireless Access 5.03 GHz Band Spurious & Out-Band Leakage |
| 3  | TELEC 5G Wireless Access 4.9 GHz Band Spurious & Out-Band Leakage  |
| 4  | TELEC 5G Wireless Access Secondary Emission                        |
| 5  | TELEC 5G Data Communication System Spurious                        |
| 6  | TELEC 5G Data Communication System Out-Band Leakage                |
| 7  | TELEC 5G Data Communication System Secondary Emission              |
| 8  | ETSI TS101 475 (HiperLAN2) Signal ON                               |
| 9  | ETSI TS101 475 (HiperLAN2) Signal OFF                              |
| 10 | FCC 15.407 5.15-5.25 Band                                          |
| 11 | FCC 15.407 5.25-5.35 Band                                          |
| 12 | FCC 15.407 5.725-5.825 Band                                        |
| 13 | FCC 15.247 2.4 GHz Band                                            |
| 14 | TELEC 2.4G Data Communication System (14CH) Spurious               |

# Initial Value

|                | Initial Value            |                                       |
|----------------|--------------------------|---------------------------------------|
|                | IEEE802.11b, IEEE802.11g | Other than IEEE802.11b or IEEE802.11g |
| Spurious Table | 0                        | 5                                     |

# ■ Initialization command

PRE

INI

IΡ

\*RST

# ■ Use example

Sets the frequency table standards to FCC 15.247 2.4 GHz Band.  $<\!$  Program> DSPL SPURIOUS,SPOT TBLSTD\_SPU 13

# TBLSWTLM\_SPU

#### ■ Function

Sweep Time for Spurious Emission

Sets Sweep Time for spurious emission measurement in Search measurement on the Spurious Emission screen.

# ■ Syntax

| Program Message    | Query Message     | Response Message |
|--------------------|-------------------|------------------|
| TBLSWTLM_SPU a,b,c | TBLSWTLM_SPU? a,b | c                |

# ■ Parameter

а

#### Spurious Mode

| а     | Frequency Table                  |  |
|-------|----------------------------------|--|
| SWEEP | Sweep Time in Search measurement |  |

b

# Frequency Table

| b         | Unit |  |
|-----------|------|--|
| F1 to F15 | None |  |

vbw

Sweep Time

Setting

| Resolution | Unit |  |
|------------|------|--|
| 1          | msec |  |

Response

| Resolution | Unit |
|------------|------|
| 1          | usec |

#### ☐ Suffix code

None: msec

S: sec MS: msec US: usec

# ■ Restrictions

Input values are rounded as shown below.

| Input Value      | Input Value Setting Value                                          |  |
|------------------|--------------------------------------------------------------------|--|
| 10 msec to 1 sec | Rounded to 5-msec resolution value (fractions are rounded up)      |  |
| 1 to 1000 sec    | Rounded to 3-digit valid number (4th digit from top is rounded up) |  |

#### ■ Initialization command

PRE

INI

IP

\*RST

# ■ Use example

Sets Sweep Time of fourth Frequency Table in spurious emission measurement to 100 msec.

<Program>

DSPL SETTBL\_SPU,SWEEP TBLSWTLM\_SPU SWEEP,F4,100MS TBLSWTLM\_SPU? SWEEP,F4

<Response>

# TBLSWTMD\_SPU

#### ■ Function

Sweep Time Manual/Auto for Spurious Emission

Sets whether sweep time is automatically or manually set at spurious emission measurement.

# ■ Syntax

| Program Message   | Query Message   | Response Message |  |
|-------------------|-----------------|------------------|--|
| TBLSWTMD_SPU a, b | TBLSWTMD_SPU? a | b                |  |

#### ■ Parameter

a

# Measure Method

| Value | Measure Method                             |  |
|-------|--------------------------------------------|--|
| SPOT  | At spot measurement                        |  |
| SWEEP | At sweep measurement or search measurement |  |

b

# Setting Method of Sweep Time

| Value | Description                                    | Initial Value |
|-------|------------------------------------------------|---------------|
| MAN   | Sets sweep time setting mode to manual mode    |               |
| AUTO  | Sets sweep time setting mode to automatic mode | *             |

# ■ Restrictions

• Setting is forcibly switched to Manual if sweep time is changed when the setting mode is set to Auto.

• Minimum value "a" shown below is added when RBW mode is digital.

| RBW                | Data Point is 501      |                 | Data Point is 1001     |                 |
|--------------------|------------------------|-----------------|------------------------|-----------------|
|                    | Minimum Value "a" (ms) | Resolution (ms) | Minimum Value "a" (ms) | Resolution (ms) |
| 10Hz               | 50                     | 50              | 100                    | 100             |
| 30Hz               | 50                     | 50              | 100                    | 100             |
| 100Hz              | 50                     | 50              | 100                    | 100             |
| 300Hz              | 10                     | 10              | 20                     | 20              |
| 1 kHz              | 10                     | 10              | 20                     | 20              |
| 3 kHz              | 10                     | 5               | 10                     | 10              |
| 10 kHz             | 10                     | 5               | 10                     | 5               |
| $30~\mathrm{kHz}$  | 10                     | 5               | 10                     | 5               |
| 100 kHz            | 10                     | 5               | 10                     | 5               |
| $300~\mathrm{kHz}$ | 10                     | 5               | 10                     | 5               |
| 1 MHz              | 10                     | 5               | 10                     | 5               |

#### ■ Initialization command

PRE

INI

IP

\*RST

# ■ Use example

Sets sweep time in spot measurement into automatic setting at spurious emission measurement.

<Program>

TBLSWTMD\_SPU SPOT, AUTO

 ${\tt TBLSWTMD\_SPU?\ SPOT}$ 

<Response>

AUTO

# TBLSWT\_SPU

## **■** Function

Sweep Time for Spurious Emission

Sets sweep time at spurious emission measurement.

## ■ Syntax

| Program Message                  | Query Message                | Response Message |
|----------------------------------|------------------------------|------------------|
| TBLSWT_SPU table, Ftable_no, swt | TBLSWT_SPU? table, Ftable_no | swt              |

## ■ Parameter

table

Frequency Table

| Value | Frequency Table    |  |
|-------|--------------------|--|
| SPOT  | Spot Table         |  |
| SWEEP | Sweep/Search Table |  |

## Ftable\_no

Frequency Table Number

| Range     | Resolution | Unit |
|-----------|------------|------|
| F1 to F15 | 1          | None |

#### swt

Sweep time

| Value        | Resolution                          | Unit |
|--------------|-------------------------------------|------|
| 10 ms to 1 s | 5 ms                                | us   |
| 1 to 1000 s  | Three columns of significant digits | us   |

## ☐ Suffix code

None: ms

US: us (microsecond)

MS: ms

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets sweep time of the fourth table for sweep measurement to 100ms at spurious emission measurement.

<Program>
DSPL SETTBL\_SPU, SWEEP
TBLSWT\_SPU SWEEP, F3, 100MS
TBLSWT\_SPU? F3

<Response> 100000

# TBLVBWLM\_SPU

## **■** Function

VBW for Spurious Emission

Sets VBW of spurious emission measurement in Search measurement on the Spurious Emission screen.

## ■ Syntax

| Program Message    | Query Message     | Response Message |
|--------------------|-------------------|------------------|
| TBLVBWLM_SPU a,b,c | TBLVBWLM_SPU? a,b | c                |

#### ■ Parameter

я

## Spurious Mode

| а     | Spurious Mode             |
|-------|---------------------------|
| SWEEP | VBW in Search measurement |

b

## Frequency Table

| b         | Unit |
|-----------|------|
| F1 to F15 | None |

c

## **VBW**

| С                                                                                     | Unit |
|---------------------------------------------------------------------------------------|------|
| 0, 1, 3, 10, 30, 100, 300, 1000, 3000, 10000, 30000, 100000, 300000, 1000000, 3000000 | Hz   |

## ☐ Suffix code

None: Hz HZ: Hz

KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets VBW of spurious emission measurement for Frequency Table 4 in Search measurement to 30 kHz.  $\,^{\rm Program}>$ 

DSPL SETTBL\_SPU,SWEEP TBLVBWLM\_SPU SWEEP,F4,30KHZ TBLVBWLM\_SPU? SWEEP,F4

<Response> 30000

# TBLVBWMD\_SPU

#### **■** Function

VBW Manual/Auto for Spurious Emission

Sets whether VBW is automatically or manually set at spurious emission measurement.

## ■ Syntax

| Program Message   | Query Message   | Response Message |
|-------------------|-----------------|------------------|
| TBLVBWMD_SPU a, b | TBLVBWMD_SPU? a | b                |

#### ■ Parameter

а

#### Measure Method

| Value | Measure Method                             |
|-------|--------------------------------------------|
| SPOT  | At Spot measurement                        |
| SWEEP | At Sweep measurement or Search measurement |

h

## VBW Setting Method

| Value | Description                             | Initial Value |
|-------|-----------------------------------------|---------------|
| MAN   | Sets VBW setting mode to manual mode    |               |
| AUTO  | Sets VBW setting mode to automatic mode | *             |

#### ■ Restrictions

- Setting is forcibly switched to Manual if VBW is changed when the setting mode is set to Auto.
- The value of VBW is automatically set by RBW and VBW/RBW Ratio values when setting mode is Auto.

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the VBW setting mode to automatic mode when the spot is measured at spurious emission measurement.

<Program>

TBLVBWMD\_SPU SPOT, AUTO TBLVBWMD\_SPU? SPOT

<Response>

**AUTO** 

# TBLVBWRT\_SPU

#### ■ Function

VBW/RBW Ratio for Spurious Emission

Sets ratio of VBW and RBW when VBW is set automatically at spurious emission measurement.

## ■ Syntax

| Program Message   | Query Message   | Response Message |
|-------------------|-----------------|------------------|
| TBLVBWRT_SPU a, b | TBLVBWRT_SPU? a | b                |

#### ■ Parameter

a

#### Measure Method

| Value | Measure Method                             |  |
|-------|--------------------------------------------|--|
| SPOT  | At spot measurement                        |  |
| SWEEP | At sweep measurement or search measurement |  |

b

#### Ratio

| Range         | Resolution | Initial Value |  |
|---------------|------------|---------------|--|
| 0.0001 to 100 | 0.0001     | 1             |  |

#### ■ Restrictions

• Real set value is rounded off to values in the list shown below.

| Setting Value                                             |  |
|-----------------------------------------------------------|--|
| 0.0001,0.0003,0.001,0.003,0.01,0.03,0.1,0.3,1,3,10,30,100 |  |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets VBW/RBW ratio in spot measurement to 3 at spurious emission measurement.

<Program>

TBLVBWRT\_SPU SPOT, 3

TBLVBWRT\_SPU? SPOT

<Response>

3

# TBLVBW\_SPU

#### ■ Function

VBW for Spurious Emission

Sets VBW for each frequency table of Setup Spot Table screen or Setup Search/Sweep Table.

## ■ Syntax

| Program Message                  | Query Message                | Response Message |  |
|----------------------------------|------------------------------|------------------|--|
| TBLVBW_SPU table, Ftable_no, rbw | TBLVBW_SPU? table, Ftable_no | vbw              |  |

## ■ Parameter

table

Frequency Table

| Value | Frequency Table    |  |  |
|-------|--------------------|--|--|
| SPOT  | Spot table         |  |  |
| SWEEP | Sweep/Search table |  |  |

## Ftable\_no

Frequency Table Number

| Range     | Resolution | Unit |
|-----------|------------|------|
| F1 to F15 | 1          | None |

## vbw

Frequency

| Value                                                               | Unit |
|---------------------------------------------------------------------|------|
| 0, 1, 3, 10, 100, 300, 1 k, 3 k, 10 k, 30 k, 100 k, 300 k, 1 M, 3 M | Hz   |

## ☐ Suffix code

None: Hz HZ: Hz

KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets frequency of fourth table for Spot Table to 30 kHz at spurious emission measurement.

<Program>

DSPL SETTBL\_SPU, SPOT TBLVBW\_SPU SPOT, F4, 30KHZ TBLVBW\_SPU? F4

<Response> 30000

# TBLVIEW\_SPU

#### ■ Function

View Items for Spurious Emission

Selects view items displayed on right pane of the Setup Spot Table screen or Set Search/Sweep Table.

## ■ Syntax

| Program Message | Query Message  | Response Message |  |
|-----------------|----------------|------------------|--|
| TBLVIEW_SPU a   | TBLVIEW_SPU? a | а                |  |

#### ■ Parameter

a

## View items

| а       | Description                                                                                               | Initial Value |
|---------|-----------------------------------------------------------------------------------------------------------|---------------|
| BWSWT   | Displays RBW, VBW, or SWT at sweep measurement or at spurious frequency measurement of search measurement | *             |
| REFATT  | Displays reference level and attenuator                                                                   |               |
| LMTDB   | Displays Limit (dB)                                                                                       |               |
| LMTW    | Displays Limit (xW)                                                                                       |               |
| BWSWTLM | Displays RBW, VBW, or Sweep Time for spurious level measurement.  * Only for Setup Search/Sweep Table     |               |

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Displays reference level for Setup Spot Table screen at spurious emission measurement.

<Program>

DSPL SETTBL\_SPU, SPOT

TBLVIEW\_SPU REFATT

TBLVIEW\_SPU?

<Response>

REFATT

# TEMPLVL\_SMASK

## ■ Function

User Template Level for Spectrum Mask

Sets level value of user template for spectrum mask measurement.

## ■ Syntax

|   | Program Message        | Query Message      | Response Message |  |
|---|------------------------|--------------------|------------------|--|
| ĺ | TEMPLVL_SMASK ofs, lvl | TEMPLVL_SMASK? ofs | lvl              |  |

## ■ Parameter

ofs

Offset Point

| System                      | Value | Definition                                                                     |
|-----------------------------|-------|--------------------------------------------------------------------------------|
| IEEE802.11b,<br>IEEE802.11g | 1     | Level when offset frequency is -22 MHz and lower, or 22 MHz and higher (Line1) |
| (ERP-DSSS/CCK)              | 2     | Level when offset frequency is -11 to -22 MHz or 11 to 22 MHz (Line2)          |
| 041                         | 1     | Level when offset frequency is – 30 MHz or 30 MHz                              |
| Other than the above        | 2     | Level when offset frequency is –20 MHz or 20 MHz                               |
| above                       | 3     | Level when offset frequency is -11 MHz or 11 MHz                               |

## *lv1*

## Level

| System                        | а | b              | Initial Value | Resolution | Unit |
|-------------------------------|---|----------------|---------------|------------|------|
| IEEE802.11b,                  | 1 | -70.0 to $0.0$ | -50.0         | 0.1        | dB   |
| IEEE802.11g<br>(ERP-DSSS/CCK) | 2 | -70.0 to $0.0$ | -30.0         | 0.1        | dB   |
| 0.1 .1 .1                     | 1 | -70.0 to $0.0$ | -40.0         | 0.1        | dB   |
| Other than the above          | 2 | -70.0 to $0.0$ | -28.0         | 0.1        | dB   |
| above                         | 3 | -70.0 to $0.0$ | -20.0         | 0.1        | dB   |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets 11 to 22 MHz line level for IEEE802.11b template at spectrum mask measurement.

<Program>

DSPL SMASK TEMPLVL\_SMASK 2, 30 TEMPLVL\_SMASK? 2

<Response>

30

# TEMPPASS\_SMASK

#### ■ Function

Template Pass/Fail Judgement for Spectrum Mask

Reads out the pass/fail judgement result for the waveform measured by template at Spectrum Mask measurement.

## ■ Syntax

| Program Message | Query Message   | Response Message |
|-----------------|-----------------|------------------|
|                 | TEMPPASS_SMASK? | judge            |

#### ■ Parameter

judge

Judgement result

| Value | Judgement Result |
|-------|------------------|
| PASS  | Passed           |
| FAIL  | Failed           |

#### ■ Restrictions

• When no measurement is performed, OFF is returned as Response Message.

#### ■ Use example

Reads out the judgement result at Spectrum Mask measurement.

<Program>

MEAS SMASK

TEMPPASS\_SMASK?

<Response>

PASS

## **TERM**

#### ■ Function

Sets the connector for the input signal to be measured.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TERM terminal   | TERM?         | terminal         |

## ■ Parameter

terminal

Connector for the input signal to be measured

| Value | Display Method                                 | Initial Value |
|-------|------------------------------------------------|---------------|
| RF    | Sets the input signal connector to RF.         | *             |
| IQDC  | Sets the input signal connector to IQ-DC.      |               |
| IQAC  | Sets the input signal connector to IQ-AC.      |               |
| IQBAL | Sets the input signal connector to IQ-Balance. |               |

#### ■ Restrictions

• Only the Setup Common Parameter can set these (cf. DSPL).

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the input signal connector to IQ-DC.

<Program>

DSPL SETCOM

TERM IQDC

TERM?

<Response>

**IQDC** 

## ■ Restrictions due to options and equipment

Terminal = "IQDC", "IQAC", and "IQBAL" are enabled when option MS268\*A-17 or 18 I/Q input is installed.

## **TGTSY**

## **■** Function

Target System

Selects the measurement target system on the Setup Common Parameter screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TGTSY sys       | TGTSY?        | sys              |

#### ■ Parameter

SYS

Measurement object system

| Value     | Measurement Object System  |
|-----------|----------------------------|
| 11A       | IEEE802.11a                |
| HLAN2     | HiperLAN2                  |
| HISWAN    | HiSWANa                    |
| 11B       | IEEE802.11b                |
| 11G_CCK   | IEEE802.11g (ERP-DSSS/CCK) |
| 11G_EOFDM | IEEE802.11g (ERP-OFDM)     |
| 11G_DOFDM | IEEE802.11g (DSSS-OFDM)    |

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the measurement object system to HiSWANa.

<Program>

DSPL SETCOM

TGTSY HISWAN

TGTSY?

<Response>

HISWAN

## **THREHOLD**

#### **■** Function

Threshold

Sets threshold of modulation accuracy in the Modulation Analysis screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| THREHOLD n      | THREHOLD?     | n                |

#### ■ Parameter

n

Threshold of modulation accuracy

| Value   | Initial Value | Resolution | Unit |
|---------|---------------|------------|------|
| 5 to 20 | 20            | 1          | %    |

#### ■ Restrictions

- This command is enabled only when Target System is HiSWANa and Data Rate is Auto.
- This command is enabled only when EVM Threshold is On.

## ■ Use example

Sets threshold of modulation accuracy in 10.

<Program>

TGTSY HISWAN

DATRATE AUTO

DSPL MODANAL

EVM\_THRES ON

THREHOLD 10

THREHOLD?

<Response>

10

# TLCSTD\_ADJ

#### **■** Function

Select Template for Adjacent Channel Power

Selects TELEC measurement standard at Adjacent Channel Power measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TLCSTD_ADJ std  | TLCSTD_ADJ?   | std              |

#### ■ Parameter

std

Measurement standard

| Value | Description                                    | Initial value |
|-------|------------------------------------------------|---------------|
| IN    | 5 GHz band low power data communication system | *             |
| OUT   | 5 GHz band radio access system                 |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Selects  $5~\mathrm{GHz}$  band radio access system as TELEC measurement standard at Adjacent Channel Power measurement.

<Program>

TGTSY 11A

DSPL ADJ

TLCSTD\_ADJ OUT

TLCSTD\_ADJ?

<Response>

OUT

## **TRANSREFPWR**

#### ■ Function

Transient Reference Power for RF Power

In case of Ramp-on/Ramp-down of Burst is displayed Tx Power Reference Value is set in IEEE802.11b,IEEE802.11g(ERP-DSSS/CCK).

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TRANSREFPWR a   | TRANSREFPWR?  | a                |

#### ■ Parameter

а

Tx Power Reference Value

| Α     | Initial value |
|-------|---------------|
| TOTAL | *             |
| RAMP  |               |

#### ■ Restrictions

- Target System can be used at IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK).
- It is effective only when Measuring Object is Burst.
- It is invalid at the time of Trace Format is Slot or Measuring Object is Continuous.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Tx Power reference value of Ramp-on/Ramp-down is set up on the basis of the average power of waveform display within the limits of Ramp-on and Ramp-down of Burst.

<Program>

DSPL RFPWR

TRANSSCALE 10.0

TRANSREFPWR RAMP

TRANSREFPWR?

<Response>

RAMP

## **TRANSSCALE**

#### **■** Function

Transient Scale for RF Power

Sets the display range of burst rising/falling waveform on the RF Power screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TRANSSCALE a    | TRANSSCALE?   | a                |

#### ■ Parameter

а

Waveform display range

| а           | Initial value | Resolution | Unit |
|-------------|---------------|------------|------|
| 8.0 to 40.0 | 8.0           | 0.2        | usec |

#### ■ Restrictions

• This command is disabled when Trace Format is Slot or when Measuring Object is Continuous.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the display range of the rising/falling waveform to 10 usec.

<Program>

DSPL RFPWR

TRANSSCALE 10.0

TRANSSCALE?

<Response>

10.0

## **TRANSTIME**

#### **■** Function

Transient-Time

Outputs the burst transient time of IEEE802.11b and IEEE802.11g (ERP-DSSS/CCK) on the RF Power and Batch screens.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | TRANSTIME?    | a,b              |

#### ■ Parameter

a,b

Transient time

|   | Resolution | Unit | Remarks   |
|---|------------|------|-----------|
| a | 0.1        | usec | Ramp-on   |
| b | 0.1        | usec | Ramp-down |

#### ■ Restrictions

• This function is disabled when Target System is not set to IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK), or when Measuring Object is Continuous.

## ■ Use example

Reads out the burst transient time.

<Program>

TGTSY 11B

MEASOBJ BURST

MEAS RFPWR

TRANSTIME?

<Response>

0.12, 2.34

## **TRFORM**

#### ■ Function

Trace Format for Modulation Analysis

Sets the format of waveform display at Modulation Analysis measurement.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TRFORM form     | TRFORM?       | form             |

#### ■ Parameter

*form* 

Waveform format

| Value         | Waveform format       |                                                                    | Initial<br>value |
|---------------|-----------------------|--------------------------------------------------------------------|------------------|
| NON           | No Trace:             | Displays the numeric results only.<br>Does not display a waveform. | *                |
| CONSTEL       | Constellation:        | Displays IQ diagram.                                               |                  |
| CONSTEL_BPSK  | Constellation:        | Displays IQ diagram(BPSK).                                         |                  |
| CONSTEL_QPSK  | Constellation:        | Displays IQ diagram(QPSK).                                         |                  |
| CONSTEL_16QAM | Constellation:        | Displays IQ diagram(16QAM).                                        |                  |
| CONSTEL_64QAM | Constellation:        | Displays IQ diagram(64QAM).                                        |                  |
| EYE           | Eye Diagram:          | Displays difference from IQ signal time.                           |                  |
| EVMSYM        | EVM vs. Symbol:       | Displays EVM in Chip units.                                        |                  |
| PHASE         | Phase Error vs. Symbo | l: Displays the phase error in Chip units.                         |                  |
| EVMSUB        | EVM vs. Sub-carrier:  | Displays EVM in Sub-carrier units.                                 |                  |
| EVMSUB_BPSK   | EVM vs. Sub-carrier:  | Displays EVM in Sub-carrier units(BPSK).                           |                  |
| EVMSUB_QPSK   | EVM vs. Sub-carrier:  | Displays EVM in Sub-carrier units(QPSK).                           |                  |
| EVMSUB_16QAM  | EVM vs. Sub-carrier:  | Displays EVM in Sub-carrier units(16QAM).                          |                  |
| EVMSUB_64QAM  | EVM vs. Sub-carrier:  | Displays EVM in Sub-carrier units(64QAM).                          |                  |
| EVMSUB_TOTAL  | EVM vs. Sub-carrier:  | Displays EVM in Sub-carrier units(TOTAL).                          |                  |
| SPFLAT        | Spectrum Flatness:    | Displays spectrum flatness in Sub-carrier units.                   |                  |

#### ■ Restrictions

- The Eye Diagram display is enabled when Target System is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) (cf. TGTSY).
- The EVM vs. Sub-carrier display is enabled only when Target System is IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) or IEEE802.11g (DSSS-OFDM) (*cf.* TGTSY).
- The Spectrum Flatness display is enabled only when Target System is IEEE802.11a, HiperLAN2, HiSWANa, IEEE802.11g (ERP-OFDM) or IEEE802.11g (DSSS-OFDM) while Measuring Object is Burst and Terminal is RF. However When Target System is HiSWANa and Data Rate is Auto is not enabled.

• The display for each modulation in Constellation and EVM vs. Sub-carrier is enable when Target System is HiSWANa and Data Rate is Auto.

#### ■ Initialization command

PRE

INI

IΡ

\*RST

#### ■ Use example

Sets the waveform display format to Phase Error vs. Symbol.

<Program>

MEAS MODANAL

TRFORM PHASE

TRFORM?

<Response>

PHASE

# TRFORM\_CCDF

#### **■** Function

Trace Format for CCDF

Sets the waveform display format on the CCDF screen.

## ■ Syntax

| Program Message  | Query Message | Response Message |
|------------------|---------------|------------------|
| TRFORM_CCDF form | TRFORM_CCDF?  | form             |

#### ■ Parameter

form

Wave format

| Value  | Wave format                                          | Initial value |
|--------|------------------------------------------------------|---------------|
| POS    | Displays Power distribution more than Average Power. |               |
| NEG    | Displays Power distribution less than Average Power. |               |
| POSNEG | Displays total Power distribution.                   | *             |

#### ■ Restrictions

• This setting is possible only when Measure Method is APD (cf. DSPL).

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets Trace Format to Positive & Negative.

<Program>

DSPL CCDF,APD

TRFORM\_CCDF POSNEG

TRFORM\_CCDF?

<Response>

POSENG

# TRFORM\_RFPWR

#### **■** Function

Trace Format for RF Power

Sets waveform display format at RF Power measurement.

## ■ Syntax

| Program Message   | Query Message | Response Message |
|-------------------|---------------|------------------|
| TRFORM_RFPWR form | TRFORM_RFPWR? | form             |

#### ■ Parameter

form

Waveform format

| Value  | Waveform Format                                                  | Initial Value |
|--------|------------------------------------------------------------------|---------------|
| SLOT   | Slot: Displays the waveform in one slot.                         | *             |
| TRNSNT | Transient: Displays zoom of leading and trailing edges of burst. |               |

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets waveform display format to Transient.

<Program>

MEAS RFPWR

TRFORM\_RFPWR TRNSNT

TRFORM\_RFPWR?

<Response>

TRNSNT

## **TRG**

#### ■ Function

Trigger

Chooses whether to start the measurement using internal timing or external timing.

## ■ Syntax

| Program Message | ge Query Message Response Messa |     |
|-----------------|---------------------------------|-----|
| TRG trg         | TRG?                            | trg |

#### ■ Parameter

trg

Trigger setting

| Value  | Trigger Setting                                            | Initial value |
|--------|------------------------------------------------------------|---------------|
| FREE   | Free Run: Starts a measurement using internal timing.      | *             |
| WIDEIF | Wide IF: Starts a measurement using Wide IF Video trigger. |               |
| EXT    | External: Starts a measurement using external trigger.     |               |

#### ■ Restrictions

- Usable only when the displayed measurement screen is CCDF screen (cf. DSPL).
- The setting of WIDEIF is not enabled when Terminal is IQ.

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Starts a measurement using external trigger.

<Program>

DSPL SETCOM

TRG EXT

TRG?

<Response>

EXT

## **TRGDLY**

#### **■** Function

Trigger Delay

Sets the time delay from the trigger input to the actual timing execution.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TRGDLY time     | TRGDLY?       | time             |

#### ■ Parameter

time

Trigger delay value

| Range                   | Resolution | Initial Value | Unit |
|-------------------------|------------|---------------|------|
| -10000.00 to $10000.00$ | 0.01       | 0.0           | μsec |

#### ■ Restrictions

• Trigger delay setting is not possible when Trigger is set to Free Run (cf. TRG).

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the Trigger Delay value to  $100~\mu sec.$ 

<Program>

DSPL SETCOM

TRG EXT

**TRGDLY 100.0** 

TRGDLY?

<Response>

100.0

## **TRGEDGE**

#### **■** Function

Trigger Edge

Sets the trigger-signal rise or fall slops as the trigger timing reference.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TRGEDGE timing  | TRGEDGE?      | timing           |

#### ■ Parameter

timing

Trigger reference

| Value | Trigger Reference                                        | Initial value |
|-------|----------------------------------------------------------|---------------|
| RISE  | Sets trigger-signal rise slope as the trigger reference. | *             |
| FALL  | Sets trigger-signal fall slope as the trigger reference. |               |

#### ■ Restrictions

• This setting is not possible when Trigger is set to Free Run (cf. TRG).

#### ■ Initialization command

PRE

INI

IΡ

\*RST

## ■ Use example

Sets trigger-signal rise slope as the trigger reference.

<Program>

DSPL SETCOM

TRG EXT

TRGEDGE RISE

TRGEDGE?

<Response>

RISE

## **TRGLVL**

#### **■** Function

Trigger Level

Sets the trigger level of Wide IF Video trigger.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TRGLVL level    | TRGLVL?       | level            |

#### ■ Parameter

level

Trigger level setting

| Value  | Trigger Reference                 | Initial value |
|--------|-----------------------------------|---------------|
| LOW    | Sets the trigger level to Low.    | *             |
| MIDDLE | Sets the trigger level to Middle. |               |
| HIGH   | Sets the trigger level to High.   |               |

#### ■ Restrictions

• This setting is not possible except when trigger is Wide IF (cf. TRG).

#### ■ Initialization command

PRE

INI

IP

\*RST

## ■ Use example

Sets Trigger Level to Middle.

<Program>

DSPL SETCOM

TRGLVL MIDDLE

TRGLVL?

<Response>

MIDDLE

## TS

#### **■** Function

Single Measure/Sweep

Executes a measurement or sweeping once.

This command functions the same as the SWP command.

Unlike the SNGLS command, when the measuring instrument accepts a command during measurement, the command is not processed immediately but is queued until the current measurement is completed.

Since the command following the TS command is processed after the current measurement is completed, this means that the synchronization (between the measuring instrument operation and the program to send the command) is ensured.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| TS              |               |                  |

## ■ Use example

Executes a measurement or sweeping once.

<Program>

TS

## **TXPWR**

#### **■** Function

Transmitter Power

Outputs average power in one slot at RF Power measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
|                 | TXPWR?        | pwr1,pwr2        |

## ■ Parameter

pwr1/pwr2

Average power

| Power | Resolution              | Unit |
|-------|-------------------------|------|
| pwr1  | 0.01                    | dBm  |
| pwr2  | Four significant digits | W    |

## ■ Use example

Reads out measured results of TX Power.

<Program>

MEAS RFPWR

TXPWR?

<Response>

12.34,0.01714

# UNIT\_ADJ

## **■** Function

Unit for Adjacent Channel Power

Sets the unit for displaying the measured results at Adjacent Channel Power measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| UNIT_ADJ unit   | UNIT_ ADJ?    | unit             |

#### ■ Parameter

unit

Unit

| Value | Unit | Initial value |
|-------|------|---------------|
| DB    | dB   | *             |
| DBM   | dBm  |               |
| MW    | mW   |               |
| UW    | uW   |               |
| NW    | nW   |               |

#### ■ Initialization command

PRE

INI

IΡ

\*RST

## ■ Use example

Sets the unit to dBm at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

UNIT\_ADJ DBM

UNIT\_ADJ?

<Response>

DBM

# UNIT\_IQL

## **■** Function

Sets the unit f for IQ Level screen.

## ■ Syntax

| Program Message      | Query Message | Response Message |
|----------------------|---------------|------------------|
| UNIT_IQL <i>unit</i> | UNIT_IQL?     | unit             |

#### ■ Parameter

unit

Unit for level readout

| Value | Unit for Level Readout | Initial value |
|-------|------------------------|---------------|
| DBMV  | dBmV                   | *             |
| MV    | mV                     |               |

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the unit for level readout to mV.

<Program>

UNIT\_IQL MV

UNIT\_IQL?

<Response>

MV

# UNIT\_RFPWR

## ■ Function

Unit for RF Power

Sets waveform display unit at RF Power measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| UNIT_RFPWR unit | UNIT_RFPWR?   | unit             |

#### ■ Parameter

unit

Display unit

| Value | Display Unit         | Initial Value |
|-------|----------------------|---------------|
| DB    | Display in dB units  | *             |
| DBM   | Display in dBm units |               |
| PC    | Display in % units   |               |

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets the display unit to %.

<Program>

DSPL RFPWR

UNIT\_RFPWR PC

UNIT\_RFPWR?

<Response>

PC

# UNIT\_SMASK

## **■** Function

Unit for Spectrum Mask

Sets the unit for displaying the measured results at Spectrum Mask measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| UNIT_SMASK unit | UNIT_SMASK?   | unit             |

#### ■ Parameter

unit

Unit

| Value | Unit | Initial value |
|-------|------|---------------|
| DB    | dB   | *             |
| DBM   | dBm  |               |
| MW    | mW   |               |
| UW    | uW   |               |
| NW    | nW   |               |

#### ■ Initialization command

PRE

INI

IP

\*RST

## ■ Use example

Sets Unit to dBm at Spectrum Mask measurement.

<Program>

DSPL SMASK

UNIT\_SMASK DBM

UNIT\_SMASK?

<Response>

DBM

# UNIT\_SPU

## **■** Function

Unit for Spurious Emission

Sets the unit for displaying the level measured results at spurious emission measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| UNIT_SPU unit   | UNIT_SPU?     | unit             |

#### ■ Parameter

unit

Unit

| Value | Unit                       | Initial Value |
|-------|----------------------------|---------------|
| DB    | dB                         |               |
| DBM   | dBm                        | *             |
| W_MHz | Watt per a 1 MHz bandwidth |               |
| W     | Watt                       |               |

## ■ Initialization command

PRE

INI

IP

\*RST

## ■ Use example

Sets the unit to dBm at spurious emission measurement.

<Program>

DSPL SPURIOUS, SPOT

UNIT\_SPU DBM

UNIT\_SPU?

<Response>

DBM

## **VBM\_ADJ**

#### **■** Function

VBW: Auto/Manual for Adjacent Channel Power

Sets whether VBW for Spectrum Analyzer is set automatically or manually at Adjacent Channel Power measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VBM_ADJ mode    | VBM_ADJ?      | mode             |

#### ■ Parameter

mode

VBW setting mode

| Value | Mode                                        | Initial value |
|-------|---------------------------------------------|---------------|
| AUTO  | Sets the VBW setting mode to automatic mode |               |
| MAN   | Sets the VBW setting mode to manual mode    | *             |

#### ■ Restrictions

- If VBW is changed when the setting mode is set to Auto, the setting is forcibly switched to Manual.
- The value of VBW is automatically set by the values of RBW and Ratio when the setting mode is Auto.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the VBW setting mode to automatic mode at Adjacent Channel Power measurement

<Program>

DSPL ADJ

VBM\_ADJ AUTO

VBM ADJ?

<Response>

AUTO

## **VBM\_OBW**

#### **■** Function

VBW: Auto/Manual for Occupied Bandwidth

Sets whether VBW for Spectrum Analyzer is set automatically or manually at Occupied Bandwidth measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VBM_OBW mode    | VBM_OBW?      | mode             |

#### ■ Parameter

mode

VBW setting mode

| Value | Mode                                        | Initial value |
|-------|---------------------------------------------|---------------|
| AUTO  | Sets the VBW setting mode to automatic mode |               |
| MAN   | Sets the VBW setting mode to manual mode    | *             |

#### ■ Restrictions

- If VBW is changed when the setting mode is set to Auto, the setting is forcibly switched to Manual.
- The value of VBW is automatically set by the values of RBW and Ratio when the setting mode is Auto.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the VBW setting mode to automatic mode at Occupied Bandwidth measurement.

<Program>

DSPL OBW

VBM\_OBW AUTO

VBM\_OBW?

<Response>

AUTO

## **VBM\_SMASK**

#### ■ Function

VBW: Auto/Manual for Spectrum Mask

Sets whether VBW for Spectrum Analyzer is set automatically or manually at Spectrum Mask measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VBM_SMASK mode  | VBM_SMASK?    | mode             |

#### ■ Parameter

mode

VBW setting mode

| Value | Mode                                        | Initial value |
|-------|---------------------------------------------|---------------|
| AUTO  | Sets the VBW setting mode to automatic mode |               |
| MAN   | Sets the VBW setting mode to manual mode    | *             |

#### ■ Restrictions

- If VBW is changed when the setting mode is set to Auto, the setting is forcibly switched to Manual.
- The value of VBW is automatically set by the values of RBW and Ratio when the setting mode is Auto.

#### ■ Initialization command

PRE

INI

ΙP

\*RST

#### ■ Use example

Sets the VBW setting mode to automatic mode at Spectrum Mask measurement.

<Program>

DSPL SMASK

VBM\_SMASK AUTO

VBM\_SMASK?

<Response>

AUTO

## VBR\_ADJ

#### ■ Function

VBW/RBW Ratio for Adjacent Channel Power

Sets the ratio between VBW and RBW when VBW is set automatically at Adjacent Channel Power measurement.

#### ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| $VBR\_ADJ r$    | VBR_ADJ?      | r                |

## ■ Parameter

70

#### VBW/RBW Ratio

| Range         | Resolution | Unit | Initial value |
|---------------|------------|------|---------------|
| 0.0001 to 100 | 0.0001     | None | 1             |

#### ■ Restrictions

• Although any value within the setting range can be input, the actual value is set according to the following list.

| Setting value                                                         |  |  |
|-----------------------------------------------------------------------|--|--|
| 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100 |  |  |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets VBW/RBW Ratio to 3 at Adjacent Channel Power measurement.

<Program>

DSPLADJ

 $VBR\_ADJ\ 3$ 

VBR\_ADJ?

<Response>

## VBR\_OBW

#### ■ Function

VBW/RBW Ratio for Occupied Bandwidth

Sets the ratio between VBW and RBW when VBW is set automatically at Occupied Bandwidth measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VBR_OBW r       | VBR_OBW?      | r                |

#### ■ Parameter

r

#### VBW/RBW Ratio

| Range         | Resolution | Unit | Initial value |
|---------------|------------|------|---------------|
| 0.0001 to 100 | 0.0001     | None | 1             |

#### ■ Restrictions

• Although any value within the setting range can be input, the actual value is set according to the following list.

| Setting value                                                         |  |  |
|-----------------------------------------------------------------------|--|--|
| 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100 |  |  |

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets VBW/RBW Ratio to 3 at Occupied Bandwidth measurement.

<Program>

DSPL OBW

VBR\_OBW 3

VBR\_OBW?

<Response>

## VBR\_SMASK

#### ■ Function

VBW/RBW Ratio for Spectrum Mask

Sets the ratio between VBW and RBW when VBW is set automatically at Spectrum Mask measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| $VBR\_SMASK r$  | VBR_SMASK?    | r                |

#### ■ Parameter

r

#### VBW/RBW Ratio

| Range         | Resolution | Unit | Initial value |
|---------------|------------|------|---------------|
| 0.0001 to 100 | 0.0001     | None | 1             |

## ■ Restrictions

• Although any value within the setting range can be input, the actual value is set according to the following list.

| Setting value                                                         |
|-----------------------------------------------------------------------|
| 0.0001, 0.0003, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100 |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Sets VBW/RBW Ratio to 3 at Spectrum Mask measurement.

<Program>

DSPL SMASK

VBR\_SMASK 3

VBR\_SMASK?

<Response>

## VBW\_ADJ

#### ■ Function

Select Video Bandwidth for Adjacent Channel Power

Sets VBW for Spectrum Analyzer at Adjacent Channel Power measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VBW_ADJ f       | VBW_ADJ?      | f                |

#### ■ Parameter

f

## **VBW**

| Range              | Resolution | Unit       | Initial value |
|--------------------|------------|------------|---------------|
| 0 (OFF) to 3000000 | 1          | $_{ m Hz}$ | 100000        |

#### ☐ Suffix code

None: Hz HZ: Hz

KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

#### ■ Restrictions

• This setting is not possible when RBW Type is set to Digital (*cf.* RBWTP\_ADJ).

Although any value within the setting range can be input, the actual value is set according to the following list.

## Setting value

 $0~\mathrm{Hz}$  (OFF),  $1~\mathrm{Hz},\,3~\mathrm{Hz},\,10~\mathrm{Hz},\,30~\mathrm{Hz},\,100~\mathrm{Hz},\,300~\mathrm{Hz},\,1~\mathrm{kHz},\,3~\mathrm{kHz},\,10~\mathrm{kHz},\,30~\mathrm{kHz},\,100~\mathrm{kHz},\,300~\mathrm{kHz},\,1~\mathrm{MHz},\,3~\mathrm{MHz}$ 

#### ■ Initialization command

PRE

INI

IΡ

\*RST

## ■ Use example

Sets VBW to 30 kHz at Adjacent Channel Power measurement.

<Program>

DSPL ADJ

 $VBW\_ADJ~30KHZ$ 

VBW\_ADJ?

<Response>

## VBW\_OBW

#### **■** Function

Select Video Bandwidth for Occupied Bandwidth

Sets VBW for Spectrum Analyzer at Occupied Bandwidth measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VBW_OBW f       | VBW_OBW?      | f                |

#### ■ Parameter

f

## **VBW**

| Range              | Resolution | Unit       | Initial value |
|--------------------|------------|------------|---------------|
| 0 (OFF) to 3000000 | 1          | $_{ m Hz}$ | 100000        |

#### ☐ Suffix code

None: Hz HZ: Hz

KHZ, KZ: kHz MHZ, MZ: MHz GHZ, GZ: GHz

#### ■ Restrictions

• This setting is not possible when RBW Type is set to Digital (*cf.* RBWTP\_OBW). Although any value within the setting range can be input, the actual value is set according to the following list.

## Setting value

 $0~\mathrm{Hz}$  (OFF),  $1~\mathrm{Hz},\,3~\mathrm{Hz},\,10~\mathrm{Hz},\,30~\mathrm{Hz},\,100~\mathrm{Hz},\,300~\mathrm{Hz},\,1~\mathrm{kHz},\,3~\mathrm{kHz},\,10~\mathrm{kHz},\,30~\mathrm{kHz},\,100~\mathrm{kHz},\,300~\mathrm{kHz},\,1~\mathrm{MHz},\,3~\mathrm{MHz}$ 

#### ■ Initialization command

PRE

INI

IΡ

\*RST

## ■ Use example

Sets VBW to 30 kHz at Occupied Bandwidth measurement.

<Program>

DSPL OBW

 $VBW\_OBW~30KHZ$ 

VBW\_OBW?

<Response>

## VBW\_SMASK

#### **■** Function

Select Video Bandwidth for Spectrum Mask

Sets VBW for Spectrum Analyzer at Spectrum Mask measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VBW_SMASK f     | VBW_SMASK?    | f                |

#### ■ Parameter

f

## **VBW**

| Range              | Resolution | Unit       | Initial value |
|--------------------|------------|------------|---------------|
| 0 (OFF) to 3000000 | 1          | $_{ m Hz}$ | 100000        |

#### ☐ Suffix code

None: Hz HZ: Hz

KHZ, KZ: kHz MHZ, MZ: MHz GHz, GZ: GHz

#### ■ Restrictions

• This setting is not possible when RBW Type is set to Digital (*cf.* RBWTP\_SMASK). Although any value within the setting range can be input, the actual value is set according to the following list.

## Setting value

 $0~\mathrm{Hz}$  (OFF),  $1~\mathrm{Hz},\,3~\mathrm{Hz},\,10~\mathrm{Hz},\,30~\mathrm{Hz},\,100~\mathrm{Hz},\,300~\mathrm{Hz},\,1~\mathrm{kHz},\,3~\mathrm{kHz},\,10~\mathrm{kHz},\,30~\mathrm{kHz},\,100~\mathrm{kHz},\,300~\mathrm{kHz},\,1~\mathrm{MHz},\,3~\mathrm{MHz}$ 

#### ■ Initialization command

PRE

INI

IΡ

\*RST

## ■ Use example

Sets VBW to 30 kHz at Spectrum Mask measurement.

<Program>

DSPL SMASK

 $VBW\_SMASK~30KHZ$ 

VBW\_SMASK?

<Response>

## **VECTERR**

#### ■ Function

RMS EVM

Outputs the measured results of RMS EVM at the Modulation Analysis measurement.

## ■ Syntax

| Program Message | Query Message      | Response Message |
|-----------------|--------------------|------------------|
|                 | VECTERR? unit, mod | rms              |
|                 | VECTERR? VIEW      | rms_view         |

#### ■ Parameter

unit

## Output

| Value | Unit |
|-------|------|
| None  | %    |
| DB    | dB   |

#### mod

## Modulation

| Value | Modulation       |
|-------|------------------|
| BPSK  | BPSK modulation  |
| QPSK  | QPSK modulation  |
| 16QAM | 16QAM modulation |
| 64QAM | 64QAM modulation |
| TOTAL | Every modulation |

#### rms

## RMS EVM

| Resolution | Unit |
|------------|------|
| 0.01       | %    |
| 0.01       | dB   |

## rms\_view

RMS EVM corresponding to the display specified in View Selection (cf. CONSTVIEW)

| Resolution | Unit |
|------------|------|
| 0.01       | %    |

#### ■ Restrictions

- Reading in dB units returns "\*\*\*" when Target System is IEEE802.11b or IEEE802.11g (ERP-DSSS/CCK) (cf. TGTSY).
- Reading in VECTERR? VIEW returns "\*\*\*" when Trace Format is other than Constellation (cf. TRFORM)
- A setup of mod(modulation) is enabled only when Target System is HiSWANa and Data Rate is Auto.

## ■ Use example

Reads out the measured result of RMS EVM.

<Program>

TGTSY 11A

DSPL MODANAL

SWP

**VECTERR?** DB

<Response>

-23.48

# VIEW\_BCH

## **■** Function

Batch Measurement

Switches the display screen for batch measurement.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VIEW_BCH a      | VIEW_BCH?     | a                |

## ■ Parameter

a

## View Screen

| а | Screen                                                | Initial Value |
|---|-------------------------------------------------------|---------------|
| 1 | Screen displaying modulation analysis, Tx power, etc. | *             |
| 2 | Spurious 1 screen                                     |               |
| 3 | Spurious 2 screen                                     |               |
| 4 | Result list screen                                    |               |

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Switches to the Spurious 1 screen for batch measurement.

<Program>

DSPL BATCH

 $VIEW\_BCH$  2

VIEW\_BCH?

<Response>

# VIEW\_SPU

## **■** Function

View Items for Spurious Emission

Sets the view items displayed on the right pane of Spurious Emission.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VIEW_SPU a      | VIEW_SPU?     | а                |

## ■ Parameter

a

## View Items

| а           | Description                                                                         | Initial Value |
|-------------|-------------------------------------------------------------------------------------|---------------|
| BWSWT       | Displays RBW, VBW, or SWT at sweep measurement or at search measurement and search. |               |
| REFATT      | Displays reference level and attenuator.                                            |               |
| $_{ m JDG}$ | Displays judgement result.                                                          | *             |
| LVLMS       | Displays RBW, VBW, or SWT at search measurement.                                    |               |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Displays RBW, VBW, or SWT at Spurious Emission measurement.

<Program>

DSPL SPURIOUS, SPOT

VIEW\_SPU BWSWT

VIEW\_SPU?

<Response>

BWSWT

## **VSCALE**

#### **■** Function

Vertical Scale for EVM, Phase Error and Magnitude Error

Sets the upper limit value of the vertical scale of the displayed coordinates, when Trace Format is set to EVM, Phase Error or Magnitude Error on the Modulation Analysis screen.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| VSCALE limit    | VSCALE?       | limit            |

#### ■ Parameter

limit

Upper limit value of vertical scale

Trace Format: EVM vs. Symbol, EVM vs. Sub-carrier

| Value | Upper limit of vertical scale | Initial value |
|-------|-------------------------------|---------------|
| 5     | 5%                            |               |
| 10    | 10%                           |               |
| 20    | 20%                           | *             |
| 50    | 50%                           |               |
| 100   | 100%                          |               |

Trace Format: Phase Error vs. Symbol

|       | · · ·                         |               |
|-------|-------------------------------|---------------|
| Value | Upper limit of vertical scale | Initial value |
| 5     | 5 deg                         |               |
| 10    | 10 deg                        | *             |
| 20    | 20 deg                        |               |
| 50    | 50 deg                        |               |
| 100   | 100 deg                       |               |

Trace Format: Spectrum Flatness

| Value | Upper limit of vertical scale | Initial value |
|-------|-------------------------------|---------------|
| 5     | 5 dB                          |               |
| 10    | 10 dB                         | *             |
| 20    | 20 dB                         |               |
| 50    | 50 dB                         |               |
| 100   | 100 dB                        |               |

#### ■ Restrictions

• This setting is not possible when Trace Format is No Trace (cf. TRFORM).

#### ■ Initialization command

PRE

INI

IΡ

\*RST

## ■ Use example

Sets the upper limit of vertical scale of Phase Error to 50 deg.

<Program>

MEAS MODANAL

TRFORM PHASE

VSCALE 50

VSCALE?

<Response>

# WAVEFORM\_SPU

## **■** Function

Waveform Display for Spurious Emission Sets Waveform window on the Spurious Emission to On/Off.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| WAVEFORM_SPU a  | WAVEFORM_SPU? | a                |

#### ■ Parameter

я

Waveform Window On/Off

| Value | Description                      | Initial Value |
|-------|----------------------------------|---------------|
| ON    | Displays waveform window         |               |
| OFF   | Does not display waveform window | *             |

## ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Displays Waveform window at spurious emission measurement.

<Program>

DSPL SPURIOUS, SWEEP WAVEFORM\_SPU ON

WAVEFORM\_SPU?

<Response>

ON

# WAVETBLNO\_SPU

#### ■ Function

Wave Table Number for Spurious Emission

Specifies the frequency table number for spurious emission displayed on waveform window.

## ■ Syntax

| Program Message | Query Message  | Response Message |
|-----------------|----------------|------------------|
| WAVETBLNO_SPU n | WAVETBLNO_SPU? | n                |

#### ■ Parameter

n

Table Number

| Range     | Resolution | Unit | Initial Value |
|-----------|------------|------|---------------|
| F1 to F15 | 1          | None | F1            |

#### ■ Initialization command

PRE

INI

ΙP

\*RST

## ■ Use example

Displays wave pattern of the third frequency table for spurious emission on waveform window.

<Program>

DSPL SPURIOUS, SWEEP

WAVEFORM\_SPU ON

WAVETBLNO\_SPU F3

WAVETBLNO\_SPU?

<Response>

F3

## ZAJ

#### **■** Function

Zero Set

Executes zero-point calibration for the power meter. This command functions the same as the ZE-ROSET command.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ZAJ             |               |                  |

## ■ Restrictions

• This function cannot be executed when the displayed measurement screen is other than the Power Meter screen. (cf. DSPL)

## ■ Use example

Executes "Zero Set".

<Program>

DSPL PWRMTR

ZAJ

## **ZEROSET**

#### ■ Function

Zero Set

Executes zero-point calibration for the power meter. This command functions the same as the ZAJ command.

## ■ Syntax

| Program Message | Query Message | Response Message |
|-----------------|---------------|------------------|
| ZEROSET         |               |                  |

## ■ Restrictions

• This function cannot be executed when the displayed measurement screen is other than the Power Meter screen. (*cf.* DSPL)

## ■ Use example

Executes "Zero Set".

<Program>

DSPL PWRMTR

**ZEROSET**